什么是内插法?
内插法,又称插值法。根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。按特定函数的性质分,有线性内插、非线性内插等;按引数(自变量)个数分,有单内插、双内插和三内插等。
举例:
500小时处在480小时和540小时两个数字之间,而480对应的修理费为493,540对应的为544,那么根据内插法,500小时对应的数字为x
就可以列方程为:(500-480)/(540-480)=(x-493)/(544-493),解这个方程,即可得出500小时对应的修理费。
将上面的式子变形,得出X=493+(500-480)/(540-480)*(544-493)。
拓展资料
(1)“内插法”的原理是根据等比关系建立一个方程,然后解方程计算得出所要求的数据。
例如:假设与A1对应的数据是B1,与A2对应的数据是B2,A介于A1和A2之间,已知与A对应的数据是B,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值。
(2)仔细观察一下这个方程会看出一个特点,即相对应的数据在等式两方的位置相同。例如:A1位于等式左方表达式的分子和分母的左侧,与其对应的数字B1位于等式右方的表达式的分子和分母的左侧。
(3)还需要注意的一个问题是:如果对A1和A2的数值进行交换,则必须同时对B1和B2的数值也交换,否则,计算得出的结果一定不正确。
内插法的计算式子可以有很多样子,只有保持等式两边对应即可。
2024-12-11 广告