基本初等函数在定义域内都可导吗?

 我来答
兔老大米奇
高粉答主

2023-08-08 · 醉心答题,欢迎关注
知道小有建树答主
回答量:988
采纳率:100%
帮助的人:15万
展开全部

基本初等函数在定义域内不一定都是可导的。

初等函数在定义域内一定连续,但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。

y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。

但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导!另举反例:y=x^(1/3)(即x的立。

y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。

但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导!另举反例:y=x^(1/3)(即x的立

初等函数在定义域内一定连续,但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。

y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。

但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导!另举反例:y=x^(1/3)(即x的立。

方根是基本初等函数,但在x=0处不可导。

例如:

幂函数y=x^(1/2),定义域x≥0。

导数y=1/2•x^(-1/2),只有当x>0可导。

又如,幂函数y=x^(2/3),定义域R,但在x=0处不可导。

由于函数的可导性要用到函数的极限知识,而现行课标、教材不学极限。所以中学不讲可导性。

扩展资料

基本初等函数导数:

单调性

理解函数的单调性及其几何意义。

理解函数的最大值、最小值及其几何意义。

指数函数

1、了解指数函数模型的实际背景。

2、理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

3、理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。

4、知道指数函数是一类重要的函数模型。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式