求中考数学压轴题的解题方法

最好把深圳市2008年-2009年的中考压轴题的解题过程写出来还要方法... 最好把深圳市2008年-2009年的中考压轴题的解题过程写出来
还要方法
展开
 我来答
wayr81
2010-05-04 · TA获得超过1.8万个赞
知道小有建树答主
回答量:382
采纳率:83%
帮助的人:199万
展开全部

2008年深圳市中考数学压轴题解析

22.如图9,在平面直角坐标系中,二次函数 的图象的顶点为D点,

与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),

OB=OC ,tan∠ACO= .

(1)求这个二次函数的表达式.

(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.

(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.

(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

解:(1)方法一:由已知得:C(0,-3),

A(-1,0)     …………………………1分

将A、B、C三点的坐标代入得 ………2分

解得:         …………………………3分

所以这个二次函数的表达式为:            …………………………3分

方法二:由已知得:C(0,-3),A(-1,0)……………1分

设该表达式为:                       …………………………2分

将C点的坐标代入得:              …………………………3分

所以这个二次函数的表达式为:            …………………………3分

(注:表达式的最终结果用三种形式中的任一种都不扣分)

(2)方法一:存在,F点的坐标为(2,-3)             …………………………4分

理由:易得D(1,-4),所以直线CD的解析式为: 

∴E点的坐标为(-3,0)          …………………………4分

由A、C、E、F四点的坐标得:AE=CF=2,AE‖CF

∴以A、C、E、F为顶点的四边形为平行四边形

∴存在点F,坐标为(2,-3) …………………………5分

方法二:易得D(1,-4),所以直线CD的解析式为: 

∴E点的坐标为(-3,0)    …………………………4分

∵以A、C、E、F为顶点的四边形为平行四边形

∴F点的坐标为(2,-3)或(―2,―3)

或(-4,3)   

代入抛物线的表达式检验,只有(2,-3)符合

∴存在点F,坐标为(2,-3)    …………………………5分

(3)如图,①当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),

代入抛物线的表达式,解得   …………6分

②当直线MN在x轴下方时,设圆的半径为r(r>0),

则N(r+1,-r),

代入抛物线的表达式,解得    ………7分

∴圆的半径为 或 .   ……………7分

(4)过点P作y轴的平行线与AG交于点Q,

易得G(2,-3),直线AG为 .……………8分

设P(x, ),则Q(x,-x-1),PQ .

                …………………………9分

当 时,△APG的面积最大

此时P点的坐标为 , .      …………………………10分

      2009年深圳市中考数学压轴题解析

22.(9分)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.

(1)求点B的坐标;

(2)求经过A、O、B三点的抛物线的解析式;

(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.

(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.

 解:(1)B(1, )

(2)设抛物线的解析式为y=ax(x+a),代入点B(1,  ),得 ,

因此 

(3)如图,抛物线的对称轴是直线x=—1,当点C位于对称轴与线段AB的交点时,△BOC的周长最小.

设直线AB为y=kx+b.所以 ,

因此直线AB为 ,

当x=-1时, ,

因此点C的坐标为(-1, ).

(4)如图,过P作y轴的平行线交AB于D.

         

当x=- 时,△PAB的面积的最大值为 ,此时 .

解:(1)⊙P与x轴相切.

       ∵直线y=-2x-8与x轴交于A(4,0),

与y轴交于B(0,-8),

∴OA=4,OB=8.

由题意,OP=-k,

∴PB=PA=8+k.

在Rt△AOP中,k2+42=(8+k)2,

∴k=-3,∴OP等于⊙P的半径,

∴⊙P与x轴相切.

(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD于E.

∵△PCD为正三角形,∴DE= CD= ,PD=3,

 ∴PE= .

∵∠AOB=∠PEB=90°, ∠ABO=∠PBE,

∴△AOB∽△PEB,

∴  ,

∴ 

∴ ,

∴ ,

∴ .

当圆心P在线段OB延长线上时,同理可得P(0,- -8),

∴k=- -8,

∴当k= -8或k=- -8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

中考数学压轴题解题方法

解答题在中考中占有相当大的比重,主要由综合性问题构成,就题型而言,包括计算题、证明题和应用题等.它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性.一般地,解题设计要因题定法,无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等.

(一)解答综合、压轴题,要把握好以下各个环节:

    1.审题:这是解题的开始,也是解题的基础.一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计.

    审题思考中,要把握“三性”,即明确目的性,提高准确性,注意隐含性.解题实践表明:条件暗示可知并启发解题手段,结论预告并诱导解题方向,只有细致地审题,才能从题目本身获得尽可能多的信息.这一步,不要怕慢,其实“慢”中有“快”,解题方向明确,解题手段合理得当,这是“快”的前提和保证.否则,欲速则不达.

2.寻求合理的解题思路和方法:破除模式化、力求创新是近几年中考数学试题的显著特点,解答题体现得尤为突出,因此,切忌套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,谨慎地确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃.

抛物线中的图形

一般而言,这类题多为压轴题,解答基本思路仍然为分析与综合.除了需要灵活运用代数与几何核心知识外,还要注意应用分类、数形结合、转化等基本数学思想方法.

23.如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;

(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

参考资料: http://files.eduuu.com/2009/06/23/091727_hdu3dhx990.doc

奇瑟媚1
2010-05-03 · TA获得超过1097个赞
知道小有建树答主
回答量:721
采纳率:0%
帮助的人:253万
展开全部
129.(广东省深圳市)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.

130.(广东省深圳市)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

131.(广东省深圳市)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).
(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.
(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标.
②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
看月亮的隔壁老张
2010-05-03
知道答主
回答量:33
采纳率:0%
帮助的人:14.6万
展开全部
如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
gfigepyg
2010-05-04 · TA获得超过7万个赞
知道大有可为答主
回答量:1.2万
采纳率:11%
帮助的人:6858万
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式