设A为奇数阶正交矩阵,det(A)=1,证明1是A的一个特征值

用反证法证明... 用反证法证明 展开
塔莞弥陶然
2019-09-20 · TA获得超过3583个赞
知道大有可为答主
回答量:3149
采纳率:27%
帮助的人:211万
展开全部
首先正交矩阵的特征值只能是1或-1,再由det(A)=1,det(A)是A的所有特征值的乘积,所以不可能特征值都是-1,否则由A为奇数阶得det(A)=-1,矛盾.故1是A的一个特征值.
morizhuhuo
2010-05-04 · TA获得超过8495个赞
知道大有可为答主
回答量:1685
采纳率:0%
帮助的人:3129万
展开全部
反证法:
因为正交阵特征值的模均为1,且复特征值成对出现,所以若1不是A的特征值,那么A的特征值只有-1,以及成对出现的复特征值。注意到A是奇数阶的,所以除去成对出现的复特征值后必有奇数个特征值 -1. 这样,利用矩阵A的所有特征值之积就等于矩阵A的行列式 detA 可知:这奇数个-1与成对出现的复特征值之积为 detA=1. 但是,奇数个-1的乘积为 -1,成对出现的复特征值之积为1,它们的乘积也是-1,与 detA=1 矛盾。因此假设不成立,1必为A的一个特征值。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式