y=ax^2+bx+c中a,b,c分别代表什么?

 我来答
生活家马先生
2019-02-24 · TA获得超过18.4万个赞
知道小有建树答主
回答量:136
采纳率:100%
帮助的人:3.6万
展开全部

a代表二次项系数,b代表一次项系数,c代表常数项

二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的 抛物线

二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次 多项式(或单项式)。如果令y值等于零,则可得一个 二次方程。该方程的解称为方程的根或函数的 零点。

扩展资料

二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。 

一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。(可巧记为:左同右异)

二次函数的三种表达式:

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x0)(x-x0) [仅限于与x轴有交点A(x0 ,0)和 B(x0,0)的抛物线]

参考资料来源:百度百科-二次函数

帐号已注销
2021-05-28 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:170万
展开全部

a代表二次项系数,b代表一次项系数,c代表常数项

可将解析式化为顶点坐标的形式

y=ax^2+bx+c

=a(x^2+bx/a)+c

=a[(x+b/2a)^2-(b/2a)^2]+c

=a(x+b/2a)^2 - b^2/4a +c

=a(x+b/2a)^2+(b^2-4ac)/4a

所以:y=ax^2+bx+c(a,b,c为常数,a≠0)的顶点是(-b/2a,(b^2-4ac)/4a)

对称轴是 X= -b/2a

具体可分为下面几种情况:

当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;

当h>0时,y=a(x+h)²的图像可由抛物线y=ax²向左平行移动h个单位得到;

当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图像;

当h>0,k>0时,将抛物线y=ax²向左平行移动h个单位,再向下移动k个单位,就可以得到y=a(x+h)²-k的图像;

当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图像;

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
峥嵘岁月139
推荐于2017-05-21 · TA获得超过1697个赞
知道答主
回答量:594
采纳率:100%
帮助的人:78.8万
展开全部
a决定抛物线的开口方向和大小。   
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。   
|a|越大,则抛物线的开口越小。
一次项系数b和
a共同决定对称轴的位置。   
当a与b同号时(即ab>0),对称轴在y轴左   
当a与b异号时(即ab<0),对称轴在y轴右。
常数项c决定抛物线与y轴交点。   
抛物线与y轴交于(0,c)
追答
可将解析式化为顶点坐标的形式
y=ax^2+bx+c
=a(x^2+bx/a)+c
=a[(x+b/2a)^2-(b/2a)^2]+c
=a(x+b/2a)^2 - b^2/4a +c
=a(x+b/2a)^2+(b^2-4ac)/4a
所以
y=ax^2+bx+c(a,b,c为常数,a≠0)的顶点是(-b/2a,(b^2-4ac)/4a)
对称轴是 X= -b/2a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式