如何培养小学生的数学思维能力
展开全部
一、从具体的感性认识入手,积极促进学生的思维
在数学基础知识教学中,应加强形成概念、法则、定律等过程的教学,这也是对学生进行初步的逻辑思维能力培养的重要手段。然而,这方面的教学比较抽象,加之学生年龄小,生活经验缺乏,抽象思维能力较差,学习时比较吃力。学生学习抽象的知识,是在多次感性认识的基础上产生飞跃,感知认识是学生理解知识的基础,直观是数学抽象思维的途径和信息来源。我在教学时,注意由直观到抽象,逐步培养学生的抽象思维的能力。在教学“角”这部分知识时,为了使学生获得关于角的正确概念,我首先引导学生观察实物和模型:如三角板、五角星和张开的剪刀、扇子形成的角等,从这些实物中抽象出角。接着再通过实物演示,将两根细木条的一端钉在一起,旋转其中的一根,直观地说明由一条射线绕着它的端点旋转可以得到大小不同的角,并让学生用准备好的学具亲自动手演示,用运动的观点来阐明角的概念,并为引出平角、周角等概念做了准备。
二、从新旧知识的联系入手,积极发展学生思维
数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。我每教一点新知识都尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如在教加减法各部分的关系时,我先复习了加法中各部分的名称,然后引导学生从35+25=60中得出:60-25=35;60-35=25。通过比较,可以看出后两算式的得数实际上分别是前一个算式中的加数,通过观察、比较,让学生自己总结出求加数的公式:一个加数=和-另一个加数。这样引导学生通过温故知新,将新知识纳入原来的知识系统中,丰富了知识,开阔了视野,思维也得到了发展。
三、精心设计问题,引导学生思维
小学生的独立性较差,他们不善于组织自己的思维活动,往往是看到什么就想到什么。培养学生逻辑思维能力,主要是在教学过程中通过教师示范、引导、指导,潜移默化地使学生获得一些思维的方法。教师在教学过程中精心设计问题,提出一些富有启发性的问题,激发思维,最大限度地调动学生的积极性和主动性。学生的思维能力只有在思维的活跃状态中,才能得到有效的发展。在教学过程中,教师应根据教材重点和学生的实际提出深浅适度,具有思考性的问题,这样就将每位学生的思维活动都激活起来,通过正确的思维方法,掌握新学习的知识。
四、进行说理训练,推动学生思维
语言是思维的工具,是思维的外壳,加强数学课堂的语言训练,特别是口头说理训练,是发展学生思维的好办法。在学习“小数和复名数”这一章节时,由于小数与复名数相互改写,需要综合运用的知识较多,这些又恰恰是学生容易出错的地方。怎样突破难点,使学生掌握好这一部分知识呢?我在课堂教学中注重加强说理训练。在学生学完例题后,启发总结出小数与复名数相互改写的方法,再让学生根据方法讲出做题的过程。通过这样反复的说理训练,收到了较好的效果,既加深了学生对知识的理解,又推动了思维能力的发展。
在数学基础知识教学中,应加强形成概念、法则、定律等过程的教学,这也是对学生进行初步的逻辑思维能力培养的重要手段。然而,这方面的教学比较抽象,加之学生年龄小,生活经验缺乏,抽象思维能力较差,学习时比较吃力。学生学习抽象的知识,是在多次感性认识的基础上产生飞跃,感知认识是学生理解知识的基础,直观是数学抽象思维的途径和信息来源。我在教学时,注意由直观到抽象,逐步培养学生的抽象思维的能力。在教学“角”这部分知识时,为了使学生获得关于角的正确概念,我首先引导学生观察实物和模型:如三角板、五角星和张开的剪刀、扇子形成的角等,从这些实物中抽象出角。接着再通过实物演示,将两根细木条的一端钉在一起,旋转其中的一根,直观地说明由一条射线绕着它的端点旋转可以得到大小不同的角,并让学生用准备好的学具亲自动手演示,用运动的观点来阐明角的概念,并为引出平角、周角等概念做了准备。
二、从新旧知识的联系入手,积极发展学生思维
数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。我每教一点新知识都尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如在教加减法各部分的关系时,我先复习了加法中各部分的名称,然后引导学生从35+25=60中得出:60-25=35;60-35=25。通过比较,可以看出后两算式的得数实际上分别是前一个算式中的加数,通过观察、比较,让学生自己总结出求加数的公式:一个加数=和-另一个加数。这样引导学生通过温故知新,将新知识纳入原来的知识系统中,丰富了知识,开阔了视野,思维也得到了发展。
三、精心设计问题,引导学生思维
小学生的独立性较差,他们不善于组织自己的思维活动,往往是看到什么就想到什么。培养学生逻辑思维能力,主要是在教学过程中通过教师示范、引导、指导,潜移默化地使学生获得一些思维的方法。教师在教学过程中精心设计问题,提出一些富有启发性的问题,激发思维,最大限度地调动学生的积极性和主动性。学生的思维能力只有在思维的活跃状态中,才能得到有效的发展。在教学过程中,教师应根据教材重点和学生的实际提出深浅适度,具有思考性的问题,这样就将每位学生的思维活动都激活起来,通过正确的思维方法,掌握新学习的知识。
四、进行说理训练,推动学生思维
语言是思维的工具,是思维的外壳,加强数学课堂的语言训练,特别是口头说理训练,是发展学生思维的好办法。在学习“小数和复名数”这一章节时,由于小数与复名数相互改写,需要综合运用的知识较多,这些又恰恰是学生容易出错的地方。怎样突破难点,使学生掌握好这一部分知识呢?我在课堂教学中注重加强说理训练。在学生学完例题后,启发总结出小数与复名数相互改写的方法,再让学生根据方法讲出做题的过程。通过这样反复的说理训练,收到了较好的效果,既加深了学生对知识的理解,又推动了思维能力的发展。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学。如何在数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题。孔子说:“学而不思则罔,思而不学则殆”。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。如何培养学生的数学思维能力,本文就是谈谈学生数学思维的培养的几点尝试。
1.找准数学思维能力培养的突破口。
心理学家认为,培养学生的数学思维品质是培养和发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维的不同方面的特征,因此在教学过程中应该有不同的培养手段。
思维的深刻性既是数学的性质决定了数学教学既要以学生为基础,又要培养学生的思维深刻性。数学思维的深刻性品质的差异集中体现了学生数学能力的差异,教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。
数学思维的敏捷性主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,使学生掌握速算的要领。为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用。如在概念教学中,使学生用等值语言叙述概念;数学公式教学中,要求学生掌握公式的各种变形等,都有利于培养思维的灵活性。
创造性思维品质的培养,首先应当使学生融会贯通地学习知识,养成独立思考的习惯。在独立思考的基础上,还要启发学生积极思考,使学生多思善问。能够提出高质量的问题是创新的开始。数学教学中应当鼓励学生提出不同看法,并引导学生积极思考和自我鉴别。新的课程标准和教材为我们培养学生的创造性思维开辟了广阔的空间。
批判性思维品质的培养,可以把重点放在引导学生检查和调节自己的思维活动过程上。要引导学生剖析自己发现和解决问题的过程;学习中运用了哪些基本的思考方法、技能和技巧,它们的合理性如何,效果如何,有没有更好的方法;学习中走过哪些弯路,犯过哪些错误,原因何在。
2.教会学生思维的方法
要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。
数学概念、定理是推理论证和运算的基础。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力;在例题课中要把解(证)题思路的发现过程作为重要的教学环节,仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的;在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力,会运用综合法和分析法,并在解(证)题过程中尽量要学会用数学语言、数学符号进行表达。此外,还应加强分析、综合、类比等方法的训练,提高学生的逻辑思维能力;加强逆向应用公式和逆向思考的训练,提高逆向思维能力;通过解题错、漏的剖析,提高辨识思维能力;通过一题多解(证)的训练,提高发散思维能力等。
3.善于调动学生内在的思维能力
一要培养兴趣,让学生迸发思维。教师要精心设计,使每节课形象、生动,并有意创造动人情境,设置诱人悬念,激发学生思维的火花和求知的欲望,还要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。
二要分散难点,让学生乐于思维。对于较难的问题或教学内容,教师应根据学生的实际情况,适当分解,减缓坡度,分散难点,创造条件让学生乐于思维。
三要鼓励创新,让学生独立思维。鼓励学生从不同的角度去观察问题,分析问题,养成良好的思维习惯和品质;鼓励学生敢于发表不同的见解,多赞扬、肯定,促进学生思维的广阔性发展。
当然,良好的思维品质不是一朝一夕就能形成的,但只要根据学生实际情况,通过各种手段,坚持不懈,持之以恒,就必定会有所成效。
1.找准数学思维能力培养的突破口。
心理学家认为,培养学生的数学思维品质是培养和发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维的不同方面的特征,因此在教学过程中应该有不同的培养手段。
思维的深刻性既是数学的性质决定了数学教学既要以学生为基础,又要培养学生的思维深刻性。数学思维的深刻性品质的差异集中体现了学生数学能力的差异,教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。
数学思维的敏捷性主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,使学生掌握速算的要领。为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用。如在概念教学中,使学生用等值语言叙述概念;数学公式教学中,要求学生掌握公式的各种变形等,都有利于培养思维的灵活性。
创造性思维品质的培养,首先应当使学生融会贯通地学习知识,养成独立思考的习惯。在独立思考的基础上,还要启发学生积极思考,使学生多思善问。能够提出高质量的问题是创新的开始。数学教学中应当鼓励学生提出不同看法,并引导学生积极思考和自我鉴别。新的课程标准和教材为我们培养学生的创造性思维开辟了广阔的空间。
批判性思维品质的培养,可以把重点放在引导学生检查和调节自己的思维活动过程上。要引导学生剖析自己发现和解决问题的过程;学习中运用了哪些基本的思考方法、技能和技巧,它们的合理性如何,效果如何,有没有更好的方法;学习中走过哪些弯路,犯过哪些错误,原因何在。
2.教会学生思维的方法
要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。
数学概念、定理是推理论证和运算的基础。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力;在例题课中要把解(证)题思路的发现过程作为重要的教学环节,仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的;在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力,会运用综合法和分析法,并在解(证)题过程中尽量要学会用数学语言、数学符号进行表达。此外,还应加强分析、综合、类比等方法的训练,提高学生的逻辑思维能力;加强逆向应用公式和逆向思考的训练,提高逆向思维能力;通过解题错、漏的剖析,提高辨识思维能力;通过一题多解(证)的训练,提高发散思维能力等。
3.善于调动学生内在的思维能力
一要培养兴趣,让学生迸发思维。教师要精心设计,使每节课形象、生动,并有意创造动人情境,设置诱人悬念,激发学生思维的火花和求知的欲望,还要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。
二要分散难点,让学生乐于思维。对于较难的问题或教学内容,教师应根据学生的实际情况,适当分解,减缓坡度,分散难点,创造条件让学生乐于思维。
三要鼓励创新,让学生独立思维。鼓励学生从不同的角度去观察问题,分析问题,养成良好的思维习惯和品质;鼓励学生敢于发表不同的见解,多赞扬、肯定,促进学生思维的广阔性发展。
当然,良好的思维品质不是一朝一夕就能形成的,但只要根据学生实际情况,通过各种手段,坚持不懈,持之以恒,就必定会有所成效。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-07-26 · 知道合伙人教育行家
关注
展开全部
数学是思维的体操。在数学教学中培养学生良好的思维品质,特别是创造思维能力是素质教育的一项重要内容。因此,在教学中教师应积极探究以培养学生创新意识为目标的教学方法。在完成教学大纲所规定的教学任务的前提下,依据教材中相同、相似或相反的知识因素,或具有某种内在联系的知识,引导学生经过联想、类比、求同、求异等多种思维方式,培养学生创造性思维方法和创造思维能力。
1、选准知识点,营造创造性思维的情境
教学中要使学生既长知识,又长智慧,一定要遵循学生的认知规律,重视学生获取知识的思维过程。小学数学圆面积计算公式,一般是通过由教具的直观演示对圆形面积的割补转化,推导出圆面积计算公式。这对于小学生来说,无疑是一次具有创造性的思维过程。
学习圆面积计算方法时,学生已掌握了长方形面积计算公式,有了利用割补学习平行四边形、三角形面积计算方法的初步经验,教师的主导作用就应体现在帮助学生树立假设,一步一步地展开推理论证,找到解决问题的方法。教师可设计四个思考题: ①能否将圆转化为已学过的图形?②长方形的长和宽与圆的周长和半径有什么关系?③如果圆的半径是r,这个长方形的长和宽各是多少?④依据长方形面积计算方法,整理出圆面积计算公式。
通过上述四个问题的思考,启发学生的思维,促使学生主动地发现规律,掌握规律,创造性地获取新知。
2、举一反三,培养学生思维的创造性
教师应掌握归纳问题的策略,在众多问题中,如能筛选提炼出适合学生研究的、有助于学生自己探究、思考的问题,将对学生的自学产生关键作用。例如,教师出示习题一:已知一个长方形周长是18厘米,长与宽的比是5:4,求这个长方形的面积?学生往往将周长和按5:4分配所得的数值,误认为是长方形长与宽的值。此时教师应启发学生思考:按5:4 分配长与宽与长方形的周长有什么关系?这样激活学生的思维点,使学生懂得按一定的比例分配是以它特定的、相对应的数量为前提的。在此基础上教师出示习题二:一个长方体长、宽、高的比是5:4: 2,它们的棱长和是44厘米,请你计算出这个长方体的体积。由于学生的思维点已被激活,他们将会进行较为缜密的思考、推理,最终寻得正确的解题方案。
上述教学环节的设计,目的在于学生通过动手、动脑、动口,采用观察比较、分析归纳、假设演绎等学习手段,由具体到抽象,由特殊到一般,促使学生全面理解、融会贯通,培养学生初步的逻辑思维能力,促进学生思维品质的提高。
在小学数学教学中,重视对学生创造思维能力的培养,这是时代的要求。教师要认真挖掘教材中的创造思维因素,精心设计教学过程,促使学生的创造思维能力不断得到发展和提高。
1、选准知识点,营造创造性思维的情境
教学中要使学生既长知识,又长智慧,一定要遵循学生的认知规律,重视学生获取知识的思维过程。小学数学圆面积计算公式,一般是通过由教具的直观演示对圆形面积的割补转化,推导出圆面积计算公式。这对于小学生来说,无疑是一次具有创造性的思维过程。
学习圆面积计算方法时,学生已掌握了长方形面积计算公式,有了利用割补学习平行四边形、三角形面积计算方法的初步经验,教师的主导作用就应体现在帮助学生树立假设,一步一步地展开推理论证,找到解决问题的方法。教师可设计四个思考题: ①能否将圆转化为已学过的图形?②长方形的长和宽与圆的周长和半径有什么关系?③如果圆的半径是r,这个长方形的长和宽各是多少?④依据长方形面积计算方法,整理出圆面积计算公式。
通过上述四个问题的思考,启发学生的思维,促使学生主动地发现规律,掌握规律,创造性地获取新知。
2、举一反三,培养学生思维的创造性
教师应掌握归纳问题的策略,在众多问题中,如能筛选提炼出适合学生研究的、有助于学生自己探究、思考的问题,将对学生的自学产生关键作用。例如,教师出示习题一:已知一个长方形周长是18厘米,长与宽的比是5:4,求这个长方形的面积?学生往往将周长和按5:4分配所得的数值,误认为是长方形长与宽的值。此时教师应启发学生思考:按5:4 分配长与宽与长方形的周长有什么关系?这样激活学生的思维点,使学生懂得按一定的比例分配是以它特定的、相对应的数量为前提的。在此基础上教师出示习题二:一个长方体长、宽、高的比是5:4: 2,它们的棱长和是44厘米,请你计算出这个长方体的体积。由于学生的思维点已被激活,他们将会进行较为缜密的思考、推理,最终寻得正确的解题方案。
上述教学环节的设计,目的在于学生通过动手、动脑、动口,采用观察比较、分析归纳、假设演绎等学习手段,由具体到抽象,由特殊到一般,促使学生全面理解、融会贯通,培养学生初步的逻辑思维能力,促进学生思维品质的提高。
在小学数学教学中,重视对学生创造思维能力的培养,这是时代的要求。教师要认真挖掘教材中的创造思维因素,精心设计教学过程,促使学生的创造思维能力不断得到发展和提高。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学。如何在数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题。孔子说:“学而不思则罔,思而不学则殆”。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。
本文就是谈谈学生数学思维的培养的几点尝试。
1.找准数学思维能力培养的突破口。 心理学家认为,培养学生的数学思维品质是培养和发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维的不同方面的特征,因此在教学过程中应该有不同的培养手段。 思维的深刻性既是数学的性质决定了数学教学既要以学生为基础,又要培养学生的思维深刻性。数学思维的深刻性品质的差异集中体现了学生数学能力的差异,教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。 数学思维的敏捷性主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,使学生掌握速算的要领。为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用。如在概念教学中,使学生用等值语言叙述概念;数学公式教学中,要求学生掌握公式的各种变形等,都有利于培养思维的灵活性。 创造性思维品质的培养,首先应当使学生融会贯通地学习知识,养成独立思考的习惯。在独立思考的基础上,还要启发学生积极思考,使学生多思善问。能够提出高质量的问题是创新的开始。数学教学中应当鼓励学生提出不同看法,并引导学生积极思考和自我鉴别。新的课程标准和教材为我们培养学生的创造性思维开辟了广阔的空间。 批判性思维品质的培养,可以把重点放在引导学生检查和调节自己的思维活动过程上。要引导学生剖析自己发现和解决问题的过程;学习中运用了哪些基本的思考方法、技能和技巧,它们的合理性如何,效果如何,有没有更好的方法;学习中走过哪些弯路,犯过哪些错误,原因何在。
2.教会学生思维的方法 要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。 数学概念、定理是推理论证和运算的基础。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力;在例题课中要把解(证)题思路的发现过程作为重要的教学环节,仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的;在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力,会运用综合法和分析法,并在解(证)题过程中尽量要学会用数学语言、数学符号进行表达。此外,还应加强分析、综合、类比等方法的训练,提高学生的逻辑思维能力;加强逆向应用公式和逆向思考的训练,提高逆向思维能力;通过解题错、漏的剖析,提高辨识思维能力;通过一题多解(证)的训练,提高发散思维能力等。
3.善于调动学生内在的思维能力 一要培养兴趣,让学生迸发思维。教师要精心设计,使每节课形象、生动,并有意创造动人情境,设置诱人悬念,激发学生思维的火花和求知的欲望,还要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。 二要分散难点,让学生乐于思维。对于较难的问题或教学内容,教师应根据学生的实际情况,适当分解,减缓坡度,分散难点,创造条件让学生乐于思维。 三要鼓励创新,让学生独立思维。鼓励学生从不同的角度去观察问题,分析问题,养成良好的思维习惯和品质;鼓励学生敢于发表不同的见解,多赞扬、肯定,促进学生思维的广阔性发展。 当然,良好的思维品质不是一朝一夕就能形成的,但只要根据学生实际情况,通过各种手段,坚持不懈,持之以恒,就必定会有所成效。
本文就是谈谈学生数学思维的培养的几点尝试。
1.找准数学思维能力培养的突破口。 心理学家认为,培养学生的数学思维品质是培养和发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维的不同方面的特征,因此在教学过程中应该有不同的培养手段。 思维的深刻性既是数学的性质决定了数学教学既要以学生为基础,又要培养学生的思维深刻性。数学思维的深刻性品质的差异集中体现了学生数学能力的差异,教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。 数学思维的敏捷性主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,使学生掌握速算的要领。为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用。如在概念教学中,使学生用等值语言叙述概念;数学公式教学中,要求学生掌握公式的各种变形等,都有利于培养思维的灵活性。 创造性思维品质的培养,首先应当使学生融会贯通地学习知识,养成独立思考的习惯。在独立思考的基础上,还要启发学生积极思考,使学生多思善问。能够提出高质量的问题是创新的开始。数学教学中应当鼓励学生提出不同看法,并引导学生积极思考和自我鉴别。新的课程标准和教材为我们培养学生的创造性思维开辟了广阔的空间。 批判性思维品质的培养,可以把重点放在引导学生检查和调节自己的思维活动过程上。要引导学生剖析自己发现和解决问题的过程;学习中运用了哪些基本的思考方法、技能和技巧,它们的合理性如何,效果如何,有没有更好的方法;学习中走过哪些弯路,犯过哪些错误,原因何在。
2.教会学生思维的方法 要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。 数学概念、定理是推理论证和运算的基础。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力;在例题课中要把解(证)题思路的发现过程作为重要的教学环节,仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的;在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力,会运用综合法和分析法,并在解(证)题过程中尽量要学会用数学语言、数学符号进行表达。此外,还应加强分析、综合、类比等方法的训练,提高学生的逻辑思维能力;加强逆向应用公式和逆向思考的训练,提高逆向思维能力;通过解题错、漏的剖析,提高辨识思维能力;通过一题多解(证)的训练,提高发散思维能力等。
3.善于调动学生内在的思维能力 一要培养兴趣,让学生迸发思维。教师要精心设计,使每节课形象、生动,并有意创造动人情境,设置诱人悬念,激发学生思维的火花和求知的欲望,还要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。 二要分散难点,让学生乐于思维。对于较难的问题或教学内容,教师应根据学生的实际情况,适当分解,减缓坡度,分散难点,创造条件让学生乐于思维。 三要鼓励创新,让学生独立思维。鼓励学生从不同的角度去观察问题,分析问题,养成良好的思维习惯和品质;鼓励学生敢于发表不同的见解,多赞扬、肯定,促进学生思维的广阔性发展。 当然,良好的思维品质不是一朝一夕就能形成的,但只要根据学生实际情况,通过各种手段,坚持不懈,持之以恒,就必定会有所成效。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询