什么是幂次方
幂通俗的说就是我们通常所说的多少次方,比如平方叫二次幂,立方叫三次幂,幂的大小是整数,不能是分数和小数.
设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。次方的定义还可以扩展到0次方和负数次方等等。
在电脑上输入数学公式时,因为不便于输入乘方,符号“^”也经常被用来表示次方。例如2的5次方通常被表示为2^5。
扩展资料:
次方有两种算法。
第一种是直接用乘法计算,例:3⁴=3×3×3×3=81
第二种则是用次方阶级下的数相乘,例:3⁴=9×9=81
(1) 任何不等于零的数的零次幂都等于1。
(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。
(规定了零指数幂与负整数指数幂的意义,就把指数的概念从正整数推广到了整数。正整数指数幂的各种运算法则对整数指数幂都适用。)
幂(power)指乘方运算的结果。n^m指该式意义为m个n相乘。把n^m看作乘方的结果,叫做n的m次幂。
数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的,故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
幂不符合结合律和交换律。
因为十的次方很易计算,只需在后加零即可,所以科学记数法借助此简化记录数的方式;二的次方在计算机科学中很有用。
扩展资料:
幂的大小比较法
1、计算比较法
先通过幂的计算,然后根据结果的大小,来进行比较的。
2、底数比较法
在指数相同的情况下,通过比较底数的大小,来确定两个幂的大小。
3、指数比较法
在底数相同的情况下,通过比较指数的大小,来确定两个幂的大小。
4、求差比较法
将两个幂相减,根据其差与0的比较情况,来确定两个幂的大小。
5、求商比较法
将两个幂相除,然后通过商与1的大小关系,比较两个幂的大小。
6、乘方比较法
将两个幂乘方后化为同指数幂,通过进行比较结果,来确定两个幂的大小。
7、定值比较法
通过选一个与两个幂中一个幂相接近的幂作定值,然后用两个幂与所选取的定值相比较,由此来确定两个幂的大小。
参考资料来源:百度百科-幂
2013-12-14
推荐于2017-11-26