在三角形ABC中AC比AB等于角B的余弦比角C的余弦值,若角A的余弦值等于-三分之一求sin(4B+π/3)
1个回答
展开全部
在ΔABC中AC/AB=cosB/cosC,若cosA=-1/3,求sin(4B+π/3)。
解:b/c=cosB/cosC=sinB/sinC;故tanB=tanC;又A是钝角,故B,C必都是锐角,
∴B=C=(180º-A)/2=90º-(A/2).
故sin(4B+π/3)=(1/2)sin4B+(√3/2)cos4B
=(1/2)sin(360º-2A)+(√3/2)cos(360º-2A)
=-(1/2)sin2A+(√3/2)cos2A
=-sinAcosA+(√3/2)(2cos²A-1)
=-(1/3)√[1-(1/9)]+(√3/2)(2/9-1)
=-(2/9)√2-(7/18)√3
=-(1/18)(4√2+7√3)
解:b/c=cosB/cosC=sinB/sinC;故tanB=tanC;又A是钝角,故B,C必都是锐角,
∴B=C=(180º-A)/2=90º-(A/2).
故sin(4B+π/3)=(1/2)sin4B+(√3/2)cos4B
=(1/2)sin(360º-2A)+(√3/2)cos(360º-2A)
=-(1/2)sin2A+(√3/2)cos2A
=-sinAcosA+(√3/2)(2cos²A-1)
=-(1/3)√[1-(1/9)]+(√3/2)(2/9-1)
=-(2/9)√2-(7/18)√3
=-(1/18)(4√2+7√3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询