如图所示,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线A
如图所示,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,这个最小值力口?...
如图所示,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,这个最小值力口?
展开
2014-04-17 · 知道合伙人软件行家
关注
展开全部
这题是做对称点
以AC为轴做点D的对称点F
易证 点F与点B重合
所以 DP = BP
所以 DP + PE = BP + PE
因为 两点之间线段最短
所以 当P在线段BE与AC交点时,BP + PE最小值BE
因为 △ABE是等边三角形
所以 BE = AB = 根号12
即 PD + PE最小值为根号12,也就是2根号3
以AC为轴做点D的对称点F
易证 点F与点B重合
所以 DP = BP
所以 DP + PE = BP + PE
因为 两点之间线段最短
所以 当P在线段BE与AC交点时,BP + PE最小值BE
因为 △ABE是等边三角形
所以 BE = AB = 根号12
即 PD + PE最小值为根号12,也就是2根号3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询