设α1,α2是矩阵A属于不同特征值的特征向量,证明α1+α2不是矩阵A的特征向量
2个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
证明: 由已知设α1,α2是A的分别属于不同特征值λ1,λ2的特征向量
则 Aα1=λ1α1,Aα2=λ2α2, 且λ1≠λ2.
假如aα1+bα2是A的属于特征向量λ的特征向量
则 A(aα1+bα2)=λ(aα1+bα2).
所以 λ1aα1+λ2bα2 = λ(aα1+bα2).
所以 (λ-λ1)aα1+(λ-λ2)bα2=0.
因为A的属于不同特征值的特征向量线性无关
所以 (λ-λ1)a=0,(λ-λ2)b=0
由于 ab≠0
所以 λ=λ1=λ2, 与λ1≠λ2矛盾.
则 Aα1=λ1α1,Aα2=λ2α2, 且λ1≠λ2.
假如aα1+bα2是A的属于特征向量λ的特征向量
则 A(aα1+bα2)=λ(aα1+bα2).
所以 λ1aα1+λ2bα2 = λ(aα1+bα2).
所以 (λ-λ1)aα1+(λ-λ2)bα2=0.
因为A的属于不同特征值的特征向量线性无关
所以 (λ-λ1)a=0,(λ-λ2)b=0
由于 ab≠0
所以 λ=λ1=λ2, 与λ1≠λ2矛盾.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |