高中数学题(最后一题的第三问),过程写清楚点,谢谢
3个回答
展开全部
先证1/2^4+1/3^4+...+1/n^4<1/10 即证1/16+1/81+1/4^4+1/5^4+...+1/n^4<1/10
证明:1/((n-1)(n-2)(n-3))-1/(n(n-1)(n-2))=(n-(n-3))/(n(n-1)(n-2)(n-3))
=3/(n(n-1)(n-2)(n-3))
所以
1/(n(n-1)(n-2)(n-3))=1/3*(1/((n-1)(n-2)(n-3))-1/(n(n-1)(n-2)))
当n<6时
原式<=1/16+1/81+1/256+1/625
<1/16+1/64+1/256+1/256
=(16+4+1+1)/256
=22/256
<22/220
=1/10
当n>=6时
原式
=1/16+1/81+1/4^4+1/5^4+...+1/n^4
<1/16+1/81+1/256+1/625+1/(3*4*5*6)+1/(4*5*6*7)+...+1/((n-3)(n-2)(n-1)n)
=1/16+1/81+1/256+1/625+1/3*(1/(3*4*5)-1/(4*5*6)+1/(4*5*6)-1/(5*6*7)+...+1/((n-1)(n-2)(n-3))-1/(n(n-1)(n-2)))
=1/16+1/81+1/256+1/625+1/3*(1/(3*4*5)-1/(n(n-1)(n-2)))
<1/16+1/81+1/256+1/625+1/3*(1/(3*4*5)
=1/16+1/81+1/256+1/625+1/180
<1/16+1/64+1/256+1/512+1/128
=(32+8+2+1+4)/512
=47/512
<47/470
=1/10
综上所述,得证
两边再加1/1^4就可以了
也可以尝试积分的方法:
1/2^4+1/3^4+...+1/n^4
< 1/2^4 +∫1/x^4 dx (x从3到正无穷)
= 1/2^4 + 5 /(3^5)
= 1/16+5/243
< 1/10
证明:1/((n-1)(n-2)(n-3))-1/(n(n-1)(n-2))=(n-(n-3))/(n(n-1)(n-2)(n-3))
=3/(n(n-1)(n-2)(n-3))
所以
1/(n(n-1)(n-2)(n-3))=1/3*(1/((n-1)(n-2)(n-3))-1/(n(n-1)(n-2)))
当n<6时
原式<=1/16+1/81+1/256+1/625
<1/16+1/64+1/256+1/256
=(16+4+1+1)/256
=22/256
<22/220
=1/10
当n>=6时
原式
=1/16+1/81+1/4^4+1/5^4+...+1/n^4
<1/16+1/81+1/256+1/625+1/(3*4*5*6)+1/(4*5*6*7)+...+1/((n-3)(n-2)(n-1)n)
=1/16+1/81+1/256+1/625+1/3*(1/(3*4*5)-1/(4*5*6)+1/(4*5*6)-1/(5*6*7)+...+1/((n-1)(n-2)(n-3))-1/(n(n-1)(n-2)))
=1/16+1/81+1/256+1/625+1/3*(1/(3*4*5)-1/(n(n-1)(n-2)))
<1/16+1/81+1/256+1/625+1/3*(1/(3*4*5)
=1/16+1/81+1/256+1/625+1/180
<1/16+1/64+1/256+1/512+1/128
=(32+8+2+1+4)/512
=47/512
<47/470
=1/10
综上所述,得证
两边再加1/1^4就可以了
也可以尝试积分的方法:
1/2^4+1/3^4+...+1/n^4
< 1/2^4 +∫1/x^4 dx (x从3到正无穷)
= 1/2^4 + 5 /(3^5)
= 1/16+5/243
< 1/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询