3个回答
展开全部
令x-1=√3tanu,则:tanu=(x-1)/√3,dx=[√3/(cosu)^2]du。
∴∫[1/(x^2-2x+4)^(3/2)]dx
=∫{1/[(x-1)^2+3]^(3/2)}dx
=∫{1/[3(tanu)^2+3]^(3/2)}[√3/(cosu)^2]du
=(1/3)∫{1/[1/(cosu)^3]}[1/(cosu)^2]du
=(1/3)∫cosudu
=(1/3)sinu+C
=(1/3)tanu/√[1+(tanu)^2]+C
=[1/(3√3)](x-1)/√[1+(1/3)(x-1)^2]+C
=(1/3)(x-1)/√[3+(x-1)^2]+C
=(1/3)(x-1)/√(x^2-2x+4)+C。
∴∫[1/(x^2-2x+4)^(3/2)]dx
=∫{1/[(x-1)^2+3]^(3/2)}dx
=∫{1/[3(tanu)^2+3]^(3/2)}[√3/(cosu)^2]du
=(1/3)∫{1/[1/(cosu)^3]}[1/(cosu)^2]du
=(1/3)∫cosudu
=(1/3)sinu+C
=(1/3)tanu/√[1+(tanu)^2]+C
=[1/(3√3)](x-1)/√[1+(1/3)(x-1)^2]+C
=(1/3)(x-1)/√[3+(x-1)^2]+C
=(1/3)(x-1)/√(x^2-2x+4)+C。
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
L = ∫ x/√(x²-x+1) dx
= ∫ x/√[(x-1/2)²+3/4] dx
Let x-1/2 = (√3/2)tany,dx = (√3/2)sec²y dy
tany = (2x-1)/√3,secy=2√(x²-x+1)/√3
L = ∫ [(√3/2)tany + 1/2]secy dy
= (√3/2)∫ secytany dy + (1/2)∫ secy dy
= (√3/2)secy + (1/2)ln| secy+tany | + C
= (√3/2)(2/√3)√(x²-x+1) + (1/2)ln| 2√(x²-x+1)/√3 + (2x-1)/√3 | + C
= √(x²-x+1) + (1/2)ln| (2x-1)+2√(x²-x+1) | + C₁
= ∫ x/√[(x-1/2)²+3/4] dx
Let x-1/2 = (√3/2)tany,dx = (√3/2)sec²y dy
tany = (2x-1)/√3,secy=2√(x²-x+1)/√3
L = ∫ [(√3/2)tany + 1/2]secy dy
= (√3/2)∫ secytany dy + (1/2)∫ secy dy
= (√3/2)secy + (1/2)ln| secy+tany | + C
= (√3/2)(2/√3)√(x²-x+1) + (1/2)ln| 2√(x²-x+1)/√3 + (2x-1)/√3 | + C
= √(x²-x+1) + (1/2)ln| (2x-1)+2√(x²-x+1) | + C₁
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询