数学课堂上,徐老师出示一道试题:如图1所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是

数学课堂上,徐老师出示一道试题:如图1所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60... 数学课堂上,徐老师出示一道试题:如图1所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.证明:在AB上截取EA=MC,连接EM,得△AEM.∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.又CN平分∠ACP,∠4=12∠ACP=60°.∴∠MCN=∠3+∠4=120°…①又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.∴△BEM为等边三角形.∴∠6=60°.∴∠5=180°-∠6=120°.…②∴由①②得∠MCN=∠5.在△AEM和△MCN中,∵______.∴△AEM≌△MCN (ASA).∴AM=MN.(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图2),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=______°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明) 展开
 我来答
寒花葬629
2014-10-31 · TA获得超过125个赞
知道答主
回答量:108
采纳率:50%
帮助的人:54.6万
展开全部
(1)证明:由下一步△AEM≌△MCN (ASA)所需条件证得:
∠1=∠2.AE=MC,∠MCN=∠5;

(2)解:成立.在A1B1上截取A1H=M1C1

(3)由∠AMN=60°=
(3?2)
3
×180,∠A1M1N1=90°=
(4?2)
4
×180°,
猜想:∠AnMnNn=
(n?2)
n
×180°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式