如图,从⊙O外一点P引圆的两条切线PA、PB,切点为A、B,点C是劣弧AB上一点,过C的切线交PA、PB分别于M、N
如图,从⊙O外一点P引圆的两条切线PA、PB,切点为A、B,点C是劣弧AB上一点,过C的切线交PA、PB分别于M、N,若⊙O的半径为2,∠P=60°,则△PMN的周长为(...
如图,从⊙O外一点P引圆的两条切线PA、PB,切点为A、B,点C是劣弧AB上一点,过C的切线交PA、PB分别于M、N,若⊙O的半径为2,∠P=60°,则△PMN的周长为( )A.4B.6C.43D.63
展开
展开全部
连接OP,
∵PA,PB为圆O的切线,
∴PA=PB,PO平分∠APB,OA⊥AP,
又∠APB=60°,
∴∠APO=30°,
在直角三角形APO中,OA=2,
∴OP=2OA=4,
根据勾股定理得:PA=
=2
,
∵MA,MC为圆O的两条切线,
∴MA=MC,
又NB,NC为圆O的切线,
∴NC=NB,
∴△PMN的周长=PM+PN+MN
=PM+PN+MC+NC
=PM+PN+MA+NB
=PA+PB=2PA
=4
.
故选C
∵PA,PB为圆O的切线,
∴PA=PB,PO平分∠APB,OA⊥AP,
又∠APB=60°,
∴∠APO=30°,
在直角三角形APO中,OA=2,
∴OP=2OA=4,
根据勾股定理得:PA=
OP2?OA2 |
3 |
∵MA,MC为圆O的两条切线,
∴MA=MC,
又NB,NC为圆O的切线,
∴NC=NB,
∴△PMN的周长=PM+PN+MN
=PM+PN+MC+NC
=PM+PN+MA+NB
=PA+PB=2PA
=4
3 |
故选C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询