已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.(1

已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.(1)求证:b+c=-1;(2)求证:c≥3;(3... 已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.(1)求证:b+c=-1;(2)求证:c≥3;(3)若函数f(sinα)的最大值为8,求b、c的值. 展开
 我来答
么海亦S5
2015-01-01 · TA获得超过251个赞
知道答主
回答量:164
采纳率:20%
帮助的人:62.7万
展开全部
(1)证明:∵|sinα|≤1且f(sinα)≥0恒成立,桥裤册可得f(1)≥0.
又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立,可得f(1)≤0,
∴f(1)=0,
∴1+b+c=0,∴b+c=-1.
(2)证明:∵b+c=-1,∴b=-1-c,
∴f(x)=x2-(1+c)x+c=(x-1)(x-c).
又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立
∴x-c≤0,纯轿即c≥x恒成立.
∴c≥3.
(3)∵f(sinα)=sin2α-(1+c)sinα+c=(sinα-
1+c
2
2+c-(
1+c
2
2
1+c
2
≥2

∴当sinα=-1时,f(sinα)敏宏的最大值为1-b+c.
由1-b+c=8与b+c=-1联立,
可得b=-4,c=3.
即b=-4,c=3.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式