如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为A
如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)...
如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.
展开
却星睿S2
2015-01-23
·
超过61用户采纳过TA的回答
知道答主
回答量:214
采纳率:66%
帮助的人:120万
关注
试题分析:(1)由点D是线段BC的中点得到BD=CD,再由AB=AC=BC可判断△ABC为等边三角形,于是得到AD为BC的垂直平分线,根据线段垂直平分线的性质得BE=CE; (2)由EB=EC,根据等腰三角形的性质得∠EBC=∠ECB=30°,则根据三角形内角和定理计算得∠BEC=120°,在Rt△BDE中,BD=BC=2,∠EBD=30°, 根据含30度的直角三角形三边的关系得到ED= BD= ,然后根据扇形的面积公式求解. 试题解析:(1)证明:∵点D是线段BC的中点, ∴BD=CD, ∵AB=AC=BC, ∴△ABC为等边三角形, ∴AD为BC的垂直平分线, ∴BE=CE; (2)解:∵EB=EC, ∴∠EBC=∠ECB=30°, ∴∠BEC=120°, 在Rt△BDE中,BD=BC=2,∠EBD=30°, ∴ED= BD= , ∴阴影部分(扇形)的面积= =π. 【考点】1.全等三角形的判定与性质;2.等边三角形的性质;3.扇形面积的计算. |
收起
为你推荐: