阅读下面材料:问题:如图①,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.

阅读下面材料:问题:如图①,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.小明同学的解题思路是:利用轴对称,把△ADC进行... 阅读下面材料:问题:如图①,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD的长为______;(2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长. 展开
 我来答
戏新桖s1
推荐于2016-07-10 · 超过49用户采纳过TA的回答
知道答主
回答量:179
采纳率:0%
帮助的人:120万
展开全部
(1)把△ADC沿AC翻折,得△AEC,连接DE,
∴△ADC≌△AEC,
∴∠DCA=∠ECA,DC=EC,∠DAC=∠CAE,
∵∠BAD=∠C=2∠DAC=45°,∠DAE=∠DAC+∠CAE=2∠DAC,
∴∠ECD=∠ECA+∠DCA=90°,∠BAD=∠DAE,
∴DE=
DC2+EC2
=2
2

∵∠ADB=∠DAC+∠ACD=22.5°+45°=67.5°,
∴∠ADE=180°-∠ADB-∠EDC=180°-67.5°-45°=67.5°,
∴∠ADB=∠ADE,
在△BAD和△EAD中,
∠BAD=∠EAD
AD=AD
∠BDA=∠EDA

∴△BAD≌△EAD(ASA),
∴BD=DE=2
2
;…(2分)

(2)把△ADC沿AC翻折,得△AEC,连接DE,
∴△ADC≌△AEC,
∴∠DAC=∠EAC,∠DCA=∠ECA,DC=EC,
∵∠BAD=∠BCA=2∠DAC=30°,
∴∠BAD=∠DAE=30°,∠DCE=60°,
∴△CDE为等边三角形,…(3分)
∴DC=DE,
在AE上截取AF=AB,连接DF,
∵AD是公共边,
∴△ABD≌△AFD,
∴BD=DF,
在△ABD中,∠ADB=∠DAC+∠DCA=45°,
∴∠ADE=∠AED=75°,∠ABD=105°,
∴∠AFD=105°,
∴∠DFE=75°,
∴∠DFE=∠DEF,
∴DF=DE,
∴BD=DC=2,…(4分)
作BG⊥AD于点G,
∴在Rt△BDG中,BG=BD?sin∠ADB=2×
2
2
=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消