数列{a n }的前n项和为S n ,a 1 =1, S n = 1 2 a n+1 (n∈ N * ) .(1)求a 2 ,
数列{an}的前n项和为Sn,a1=1,Sn=12an+1(n∈N*).(1)求a2,a3.(2)求数列{an}的通项an;(3)求数列{nan}的前n项和Tn....
数列{a n }的前n项和为S n ,a 1 =1, S n = 1 2 a n+1 (n∈ N * ) .(1)求a 2 ,a 3 .(2)求数列{a n }的通项a n ;(3)求数列{na n }的前n项和T n .
展开
1个回答
展开全部
(1)令n=1,得到S 1 =a 1 =
令n=2,得到S 2 =a 1 +a 2 =
则a 3 =2(1+2)=6;(3分) (2)∵a n+1 =2S n ,∴S n+1 -S n =2S n , ∴
又∵S 1 =a 1 =1, ∴数列S n 是首项为1,公比为3的等比数列,S n =3 n-1 (n∈N * ).(5分) 当n≥2时,a n =2S n-1 =2?3 n-2 (n≥2), ∴ a n =
(3)T n =a 1 +2a 2 +3a 3 +…+na n , 当n=1时,T 1 =1; 当n≥2时,T n =1+4?3 0 +6?3 1 +…+2n?3 n-2 ①, 3T n =3+4?3 1 +6?3 2 +…+2n?3 n-1 ②, ①-②得:-2T n =-2+4+2(3 1 +3 2 +…+3 n-2 )-2n?3 n-1 = 2+2?
=-1+(1-2n)?3 n-1 . ∴ T n =
又∵T 1 =a 1 =1也满足上式, ∴ T n =
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询