已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值
1个回答
展开全部
∵f(x)在x=-1时有极值0,
且f′(x)=3x2+6ax+b,
∴
,即
,
解得:
,或
,
当a=1,b=3时,
f′(x)=3x2+6x+3=3(x+1)2≥0,
∴f(x)在R上为增函数,无极值,故舍去.
当a=2,b=9时,
f′(x)=3x2+12x+9=3(x+1)(x+3),
当x∈(-∞,-3)时,f(x)为增函数;
当x∈(-3,-1)时,f(x)为减函数;
当x∈(-1,+∞)时,f(x)为增函数;
∴f(x
且f′(x)=3x2+6ax+b,
∴
|
|
解得:
|
|
当a=1,b=3时,
f′(x)=3x2+6x+3=3(x+1)2≥0,
∴f(x)在R上为增函数,无极值,故舍去.
当a=2,b=9时,
f′(x)=3x2+12x+9=3(x+1)(x+3),
当x∈(-∞,-3)时,f(x)为增函数;
当x∈(-3,-1)时,f(x)为减函数;
当x∈(-1,+∞)时,f(x)为增函数;
∴f(x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询