已知数列{an}的前n项和Sn=n(a1+an)2.(1)求证:数列{an}为等差数列;(2)若an=2n-1,数列{bn}满足:b1
已知数列{an}的前n项和Sn=n(a1+an)2.(1)求证:数列{an}为等差数列;(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥...
已知数列{an}的前n项和Sn=n(a1+an)2.(1)求证:数列{an}为等差数列;(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{1bn}的前n项和Tn.
展开
1个回答
展开全部
(1)证明:由Sn=
,
当n≥2时,Sn?1=
,
∴an=Sn-Sn-1=
-
.
同理有an+1=
-
,
从而an+1-an=
-n(a1+an)+
,
整理得an+1-an=an-an-1=a2-a1.
从而{an}是等差数列;
(2)∵an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),
∴bn-bn-1=2n+1,
则b2-b1=2?2+1.
b3-b2=2?3+1.
b4-b3=2?4+1.
…
bn-bn-1=2n+1(n≥2).
∴bn-b1=2(2+3+4+…+n)+n-1.
∴bn=3+2?
+n?1=n(n+2).
=
=
(
?
).
∴数列{
}的前n项和Tn=
[(1?
)+(
?
)+(
?
)+…+(
?
)+(
?
n(a1+an) |
2 |
当n≥2时,Sn?1=
(n?1)(a1+an?1) |
2 |
∴an=Sn-Sn-1=
n(a1+an) |
2 |
(n?1)(a1+an?1) |
2 |
同理有an+1=
(n+1)(a1+an+1) |
2 |
n(a1+an) |
2 |
从而an+1-an=
(n+1)(a1+an+1) |
2 |
(n?1)(a1+an?1) |
2 |
整理得an+1-an=an-an-1=a2-a1.
从而{an}是等差数列;
(2)∵an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),
∴bn-bn-1=2n+1,
则b2-b1=2?2+1.
b3-b2=2?3+1.
b4-b3=2?4+1.
…
bn-bn-1=2n+1(n≥2).
∴bn-b1=2(2+3+4+…+n)+n-1.
∴bn=3+2?
(n+2)(n?1) |
2 |
1 |
bn |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴数列{
1 |
bn |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n?1 |
1 |
n+1 |
1 |
n |