![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1
如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若E...
如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若EB=3CE,证明:DE∥平面A1MC1;(2)求直线BC和平面A1MC1所成角的余弦值.
展开
1个回答
展开全部
解法一:![](https://iknow-pic.cdn.bcebos.com/64380cd7912397dd00e86ab55a82b2b7d1a287ea?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto)
(1)证明:取BC中点N,连结MN,C1N,
∵M,N分别是AB,CB的中点,
∴MN∥AC∥A1C1,
∴A1,M,N,C1四点共面,
且平面BCC1B1∩平面A1MNC1=C1N,
又EB=3CE,即E为NC的中点,
∴DE∥C1N,
又DE不包含于平面A1MC1,
∴DE∥平面A1MC1.
(2)解:连结B1M,∵AA1⊥平面ABC,
∴AA1⊥AB,即四边形ABB1A1为矩形,且AB=2AA1,![](https://iknow-pic.cdn.bcebos.com/9345d688d43f8794a222ba9fd11b0ef41ad53aa5?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto)
∵M是AB的中点,∴B1M⊥A1M,
∵CA⊥AA1,CA⊥AB,AB∩AA1=A,∴CA⊥平面ABB1A1,
∴A1C1⊥平面ABB1A1,
∴A1C1⊥B1M,从而B1M⊥平面A1MC1,
∴MC1是B1C1在平面A1MC1内的射影,
∴B1C1与平面A1MC1所成角为∠B1C1M,
又B1C1∥BC,
∴直线BC和平面A1MC1所成的角即B1C1与平面A1MC1所成的角,
设AB=2AA1=2,且△A1MC1是等腰三角形,![](https://iknow-pic.cdn.bcebos.com/d31b0ef41bd5ad6ed124965b82cb39dbb7fd3ca5?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto)
∴A1M=A1C1=
,
则MC1=2,B1C1=
,
∴cos∠B1C1M=
=
,
∴直线BC和平面A1MC1所成角的余弦值为
.
解法二:
(1)证明:∵AA1⊥平面ABC,又AC⊥AB,
∴以A为原点,以AB为x轴,以AA1为y轴,以AC为z轴,
建立空间直角坐标系,
设AB=2AA1=2,又△A1MC1是等腰三角形,
∴A1(0,1,0),M(1,0,0),C1(0,1,
(1)证明:取BC中点N,连结MN,C1N,
∵M,N分别是AB,CB的中点,
∴MN∥AC∥A1C1,
∴A1,M,N,C1四点共面,
且平面BCC1B1∩平面A1MNC1=C1N,
又EB=3CE,即E为NC的中点,
∴DE∥C1N,
又DE不包含于平面A1MC1,
∴DE∥平面A1MC1.
(2)解:连结B1M,∵AA1⊥平面ABC,
∴AA1⊥AB,即四边形ABB1A1为矩形,且AB=2AA1,
∵M是AB的中点,∴B1M⊥A1M,
∵CA⊥AA1,CA⊥AB,AB∩AA1=A,∴CA⊥平面ABB1A1,
∴A1C1⊥平面ABB1A1,
∴A1C1⊥B1M,从而B1M⊥平面A1MC1,
∴MC1是B1C1在平面A1MC1内的射影,
∴B1C1与平面A1MC1所成角为∠B1C1M,
又B1C1∥BC,
∴直线BC和平面A1MC1所成的角即B1C1与平面A1MC1所成的角,
设AB=2AA1=2,且△A1MC1是等腰三角形,
∴A1M=A1C1=
2 |
则MC1=2,B1C1=
6 |
∴cos∠B1C1M=
MC1 |
B1C1 |
| ||
3 |
∴直线BC和平面A1MC1所成角的余弦值为
| ||
3 |
解法二:
(1)证明:∵AA1⊥平面ABC,又AC⊥AB,
∴以A为原点,以AB为x轴,以AA1为y轴,以AC为z轴,
建立空间直角坐标系,
设AB=2AA1=2,又△A1MC1是等腰三角形,
∴A1(0,1,0),M(1,0,0),C1(0,1,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|