数学22题给好评
展开全部
(1)【解析】
∵对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y),
∴令x=y=1,得到:f(1)=f(1)+f(1),
∴f(1)=0,
令x=y=-1,得到:f(1)=f(-1)+f(-1),
∴f(-1)=0;
(2)证明:由题意可知,令y=-1,得f(-x)=f(x)+f(-1),
∵f(-1)=0,∴f(-x)=f(x),
∴y=f(x)为偶函数;
(3)【解析】
由(2)函数f(x)是定义在非零实数集上的偶函数.
∴不等式f(x/6)+f(x-5)≤0可化为f[x/6(x-5)]≤f(1),f(|x/6(x-5)|)≤f(1),
∴-1≤x/6(x-5)≤1,即:-6≤x(x-5)≤6且x≠0,x-5≠0,
在坐标系内,如图函数y=x(x-5)图象与y=6,y=-6两直线.
由图可得x∈[-1,0)∪(0,2]∪[3,5)∪(5,6],
故不等式的解集为:[-1,0)∪(0,2]∪[3,5)∪(5,6].
∵对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y),
∴令x=y=1,得到:f(1)=f(1)+f(1),
∴f(1)=0,
令x=y=-1,得到:f(1)=f(-1)+f(-1),
∴f(-1)=0;
(2)证明:由题意可知,令y=-1,得f(-x)=f(x)+f(-1),
∵f(-1)=0,∴f(-x)=f(x),
∴y=f(x)为偶函数;
(3)【解析】
由(2)函数f(x)是定义在非零实数集上的偶函数.
∴不等式f(x/6)+f(x-5)≤0可化为f[x/6(x-5)]≤f(1),f(|x/6(x-5)|)≤f(1),
∴-1≤x/6(x-5)≤1,即:-6≤x(x-5)≤6且x≠0,x-5≠0,
在坐标系内,如图函数y=x(x-5)图象与y=6,y=-6两直线.
由图可得x∈[-1,0)∪(0,2]∪[3,5)∪(5,6],
故不等式的解集为:[-1,0)∪(0,2]∪[3,5)∪(5,6].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询