这两道题,大学物理,电磁学,谁能帮解决下,提供一下思路也行…
2个回答
展开全部
1-28
在两圆筒间取截面半径为 r,高为L的柱面 为高斯面,由高斯定理
E2πrL=λ1L/ε0
所以 E=λ1/2πε0r
则两桶之间的电势差 U= ∫Edr=λ1/2πε0∫(1/r)dr
代入积分上限 R2 下限R1积分可得 U=λ1/2πε0)ln(R2/R1)=
1-29
柱体内 取半径为r的柱面为高斯面 则由高斯定理
E1(2πrL)=ρπr²L/ε 则 E1= ρr/2ε (0<r<R)
柱体外取半径为r的柱面为高斯面 则由高斯定理
E2(2πrL)=ρπR²L/ε 则 E2= ρR²/2εr (R<r)
所以 柱体内 电势 分布
U1=∫r->0 E1dr=∫r-->0 ρr/2ε dr =ρr²/4ε (0<r<R)
柱体外电势分布
U2=∫r-->R ρR²/2εr dr+ ∫R-->0 ρr/2ε dr = (ρR²/2ε)ln(r/R) + ρR²/4ε
在两圆筒间取截面半径为 r,高为L的柱面 为高斯面,由高斯定理
E2πrL=λ1L/ε0
所以 E=λ1/2πε0r
则两桶之间的电势差 U= ∫Edr=λ1/2πε0∫(1/r)dr
代入积分上限 R2 下限R1积分可得 U=λ1/2πε0)ln(R2/R1)=
1-29
柱体内 取半径为r的柱面为高斯面 则由高斯定理
E1(2πrL)=ρπr²L/ε 则 E1= ρr/2ε (0<r<R)
柱体外取半径为r的柱面为高斯面 则由高斯定理
E2(2πrL)=ρπR²L/ε 则 E2= ρR²/2εr (R<r)
所以 柱体内 电势 分布
U1=∫r->0 E1dr=∫r-->0 ρr/2ε dr =ρr²/4ε (0<r<R)
柱体外电势分布
U2=∫r-->R ρR²/2εr dr+ ∫R-->0 ρr/2ε dr = (ρR²/2ε)ln(r/R) + ρR²/4ε
华芯测试
2024-09-01 广告
2024-09-01 广告
电学测试台是深圳市华芯测试科技有限公司的核心设备之一,它集成了高精度测量仪器与自动化控制系统,专为半导体芯片、电子元件及模块的电性能检测而设计。该测试台能够迅速、准确地完成电压、电流、电阻、电容及频率等关键参数的测试,确保产品质量符合行业标...
点击进入详情页
本回答由华芯测试提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |