柯西不等式有哪些推论及证明

 我来答
hi漫海feabd5e
2015-11-02 · 知道合伙人教育行家
hi漫海feabd5e
知道合伙人教育行家
采纳数:6749 获赞数:129943
本科学历,毕业后从事设计工作;现任标码石材科技有限公司设计员。能决绝结构设计方面中等难度问题。

向TA提问 私信TA
展开全部

  柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式在高中数学提升中非常重要,是高中数学研究内容之一。

  推论及证明

  

佳东略6238
2015-05-06 · 超过54用户采纳过TA的回答
知道答主
回答量:103
采纳率:0%
帮助的人:131万
展开全部
Cauchy不等式的形式化写法就是: 记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2. 令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则恒有 f(x) ≥ 0. 用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0. 于是移项得到结论。 还可以用向量来证. m=(a1,a2......an) n=(b1,b2......bn) mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2乘以cosX. 因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2 这就证明了不等式. 柯西不等式还有很多种方法证,这里只写出两种较常用的证法. 参考资料: http://zhidao.baidu.com/question/71851340.html?si=6&wtp=wk
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茶杯7754
2015-05-06 · 超过59用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:143万
展开全部
可参考柯西不等式在中学数学中的应用 http://hx.ptzx.net/sx/sxsj/200810/357.html 其他资料 http://baike.baidu.com/view/7618.htm#3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式