如何求1的3次方 加2的3次方 加3的3次方……具体步骤
1个回答
展开全部
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2
1^3+2^3+...+n^3=[n(n+1)/2]^2
1^3+2^3+……+n^3=[n(n+1)/2]^2所1三加2三加3三直加100三=[100(100+1)/2]²=(50x101)²=5050²=25502500
1³+2³=(1+2)²=9 1³+2³=9 1³+2³+3³+4³=100 ﹙1+2+3+4﹚²=100所 推导公式:1³+2³+3³+......+n³=﹙1+2+3+......+n﹚²
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2
1^3+2^3+...+n^3=[n(n+1)/2]^2
1^3+2^3+……+n^3=[n(n+1)/2]^2所1三加2三加3三直加100三=[100(100+1)/2]²=(50x101)²=5050²=25502500
1³+2³=(1+2)²=9 1³+2³=9 1³+2³+3³+4³=100 ﹙1+2+3+4﹚²=100所 推导公式:1³+2³+3³+......+n³=﹙1+2+3+......+n﹚²
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
1.等比数列。首项为1,公比q=3 。则数列通项公式:An=3^(n-1) 则利用等比数列求和公式: Sn=1*(1-3^2010)/(1-3) =(3^2010)/2 即:3的2010次方 除以2 2.等比数列。首项为1...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询