关于泰勒公式逐项求导或求积分一个问题

对这个做法的解释中对f(x)求导可得f(x)`的n-1阶泰勒公式对f(x)积分可得积分在x=x0的n+1阶泰勒公式前一个能理解,但积分时出来的结果没有常数项,就是不含x的... 对这个做法的解释中
对f(x)求导可得f(x)`的n-1阶泰勒公式
对f(x)积分可得积分在x=x0的n+1阶泰勒公式
前一个能理解,但积分时出来的结果没有常数项,就是不含x的项,这不就不是的泰勒公式形式么。。。
就是比方我对A0+A1x+A2x^2+A3x^3+....Anx^n积分
势必A0会配上x,然后前面就没有了
展开
 我来答
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
kent0607
高粉答主

2015-07-27 · 关注我不会让你失望
知道大有可为答主
回答量:6.2万
采纳率:77%
帮助的人:6937万
展开全部
一般讨论的是泰勒级数求导和积分问题,而不讨论泰勒公式的类似问题,你再仔细看看?
更多追问追答
追问

比如这个形式,对其积分后得其积分的n+1阶泰勒公式,也就是将x-x0的指数全部加一,第一个f(x0)乘上(x-x0)

那么他就没有不含(x-x0)的项了,即泰勒展开式标准形式的第一项,而我觉得第一项正是所有项里最重要的。。


不知道说清楚没,,我的一个困惑,请帮帮忙

追答
清楚你的意思。一般不讨论泰勒公式的求导和积分问题的(常见的是讨论泰勒级数求导和积分问题),如果真要对泰勒公式积分,可以用 [x0,x] 上的变上限积分,这样就有常数项了。问题是余项 Rn(x) 的积分怎么做?
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式