已知,如图,抛物线Y=ax^2+3ax+c【a>0】与Y轴交于C点,与X轴交于A,B两点,A点在B
已知,如图,抛物线Y=ax^2+3ax+c【a>0】与Y轴交于C点,与X轴交于A,B两点,A点在B点左侧点B的坐标为【1,0】OC=3OB【1】求抛物线的解析式【2】若点...
已知,如图,抛物线Y=ax^2+3ax+c【a>0】与Y轴交于C点,与X轴交于A,B两点,A点在B点左侧
点B的坐标为【1,0】OC=3OB
【 1】求抛物线的解析式
【2】若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值 展开
点B的坐标为【1,0】OC=3OB
【 1】求抛物线的解析式
【2】若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值 展开
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励10(财富值+成长值)+提问者悬赏10(财富值+成长值)
展开全部
(1)∴y=x2+x-3
(2)过点D作DM∥y轴分别交线段AC和x轴于点M、N.
∴S四边形ABCD=S△ABC+S△ACD=+·DM·(AN+ON)=+2DM.
∵A(-4,0),C(0,-3),
设直线AC的解析式为y=kx+b,
代入求得:y=-x-3,
令D,M,
则DM=-x-3-=- (x+2)2+3.
当x=-2时,DM有最大值3,此时四边形ABCD面积有最大值.
(3)如图①所示,讨论:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形,
∵C(0,-3),令x2+x-3=-3得x1=0,x2=-3,
∴CP1=3.∴P1(-3,-3).
②如图②,平移直线AC交x轴于点E,交x轴上方的抛物线于点P,
当AC=PE时,四边形ACEP为平行四边形,
∵C(0,-3),
∴可令P(x,3),由x2+x-3=3得:x2+3x-8=0,
解得x1=或x2=,
此时存在点P2和P3.
综上所述,存在3个点符合题意,坐标分别是P1(-3,-3),P2,P3.
(2)过点D作DM∥y轴分别交线段AC和x轴于点M、N.
∴S四边形ABCD=S△ABC+S△ACD=+·DM·(AN+ON)=+2DM.
∵A(-4,0),C(0,-3),
设直线AC的解析式为y=kx+b,
代入求得:y=-x-3,
令D,M,
则DM=-x-3-=- (x+2)2+3.
当x=-2时,DM有最大值3,此时四边形ABCD面积有最大值.
(3)如图①所示,讨论:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形,
∵C(0,-3),令x2+x-3=-3得x1=0,x2=-3,
∴CP1=3.∴P1(-3,-3).
②如图②,平移直线AC交x轴于点E,交x轴上方的抛物线于点P,
当AC=PE时,四边形ACEP为平行四边形,
∵C(0,-3),
∴可令P(x,3),由x2+x-3=3得:x2+3x-8=0,
解得x1=或x2=,
此时存在点P2和P3.
综上所述,存在3个点符合题意,坐标分别是P1(-3,-3),P2,P3.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询