用反证法证明极限的唯一性时,为什么取ε=(b-a)/2
具体原因如下:
证明如下:
假设存在a,b两个数都是函数f(x)当x→x。的极限,且a<b,根据极限的柯西定义,有如下结论:
任意给定ε>0(要注意,这个ε是对a,b都成立)。
总存在一个δ1>0,当0<丨x-x。丨<δ1时,使得丨f(x)-a丨<ε成立。
总存在一个δ2>0,当0<丨x-x。丨<δ2时,使得丨f(x)-b丨<ε成立。
上面的不等式可以等价变换为a-ε<f(x)<a+ε①和b-ε<f(x)<b+ε②。
令δ=min{δ1,δ2},当0<丨x-x。丨<δ时。①,②两个不等式同时成立。
因为①,②两个不等式同时成立,所以①式右端必定大于或等于②式左端。
即:b-ε≤a+ε,移项得:(b-a)/2≤ε,因为(b-a)/2是一个确定大小的正数,所以这个结论与极限的定义:ε可以任意小矛盾,所以假设不成立,因此不存在a,b两个数都是f(x)的极限,除非a=b矛盾才不会出现。
倘若是x趋于无穷大时的唯一性证明可以参看高数书数列极限唯一性证明,证法完全一样。
证毕。
扩展资料:
实际的操作过程还用到了另一个原理,即:
原命题和原命题的否定是对立的存在:原命题为真,则原命题的否定为假;原命题为假,则原命题的否定为真。
若原命题:
为真
先对原命题的结论进行否定,即写出原命题的否定:p且¬q。
从结论的反面出发,推出矛盾,即命题:p且¬q 为假(即存在矛盾)。
从而该命题的否定为真。
再利用原命题和逆否命题的真假性一致,即原命题:p⇒q为真。
误区:
否命题与命题的否定是两个不同的概念。
命题的否定只针对原命题的结论进行否定。而否命题同时否定条件和结论:
原命题:p⇒q;
否命题:¬p⇒¬q;
逆否命题:¬q⇒¬p;
命题的否定:p且¬q。
原命题与否命题的真假性没有必然联系,但原命题和原命题的否定却是对立的存在,一个为真另一个必然为假。
已知某命题:若A,则B,则此命题有4种情况:
1.当A为真,B为真,则A⇒B为真,得¬B⇒¬A为真;
2.当A为真,B为假,则A⇒B为假,得¬B⇒¬A为假;
3.当A为假,B为真,则A⇒B为真,得¬B⇒¬A为真;
4.当A为假,B为假,则A⇒B为真,得¬B⇒¬A为真;
∴一个命题与其逆否命题同真假。
即反证法是正确的。
假设¬B,推出¬A,就说明逆否命题是真的,那么原命题也是真的。
但实际推证的过程中,推出¬A是相当困难的,所以就转化为了推出与¬A相同效果的内容即可。这个相同效果就是与A(已知条件)矛盾,或是与已知定义、定理、大家都知道的事实等矛盾。
2023-08-01 广告
证明如下:
假设存在a,b两个数都是函数f(x)当x→x。的极限,且a<b,根据极限的柯西定义,有如下结论:
任意给定ε>0(要注意,这个ε是对a,b都成立)。
总存在一个δ1>0,当0<丨x-x。丨<δ1时,使得丨f(x)-a丨<ε成立。
总存在一个δ2>0,当0<丨x-x。丨<δ2时,使得丨f(x)-b丨<ε成立。
上面的不等式可以等价变换为a-ε<f(x)<a+ε①和b-ε<f(x)<b+ε②。
令δ=min{δ1,δ2},当0<丨x-x。丨<δ时。①,②两个不等式同时成立。
因为①,②两个不等式同时成立,所以①式右端必定大于或等于②式左端。
即:b-ε≤a+ε,移项得:(b-a)/2≤ε,因为(b-a)/2是一个确定大小的正数,所以这个结论与极限的定义:ε可以任意小矛盾,所以假设不成立,因此不存在a,b两个数都是f(x)的极限,除非a=b矛盾才不会出现。
倘若是x趋于无穷大时的唯一性证明可以参看高数书数列极限唯一性证明,证法完全一样。
证毕。