lnlnx等于多少 可以化简吗 如果可以详细过程
1个回答
展开全部
这个好像不能化简吧。
lnlnx≠x 。
对数公式
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a) 证明: 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N; log(a)a^b=b
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M ,log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M ,log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M ,log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M , log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
lnlnx≠x 。
对数公式
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a) 证明: 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N; log(a)a^b=b
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M ,log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M ,log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M ,log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M , log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询