已知n阶矩阵A,B,且R(A)+R(B)小于n,证明齐次线性方程组Ax=0和Bx=0有非零公共解。

 我来答
zzllrr小乐
高粉答主

推荐于2017-11-22 · 小乐数学,小乐阅读,小乐图客等软件原作者,“zzllrr小乐...
zzllrr小乐
采纳数:20147 获赞数:78793

向TA提问 私信TA
展开全部
R(A)+R(B)<n
则R(A),R(B)<n
因此齐次线性方程组Ax=0,和Bx=0,都必有非零解。
且非零解中基础解系(向量组1,向量组2),分别为
n-R(A),n-R(B)个解向量。

下面证明这两个基础解系,第1个基础解系中部分解向量,必然与第2个基础解系中部分解向量线性相关。

用反证法:假设不存在线性相关的解向量,则向量组1、2合成的大向量组,
n-R(A)+n-R(B)个解向量都是线性无关的。
由于n-R(A)+n-R(B)=2n-(R(A)+R(B))>n
因此该向量组秩>n,而这是不可能的,因为向量是n维的,因此假设不成立。
因此,第1个基础解系中部分解向量,必然与第2个基础解系中部分解向量线性相关。
从而必然存在非零向量,可以由第1个基础解系中部分解向量表示,也可以由第2个基础解系中部分解向量表示,即他们有公共非零解。
追问
谢谢
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式