机器学习算法中GBDT和XGBOOST的区别有哪些
机器学习算法中GBDT和XGBOOST的区别有哪些?
在昨天阿里的面试中被问到了,我只简单的说了下xgboost能自动利用cpu的多线程,而且适当改进了gradient boosting,加了剪枝,控制了模型的复杂程度
添加评论
分享
默认排序按时间排序
9 个回答
wepon ML/DM, https://github.com/wepe
252 人赞同
xgboost相比传统gbdt有何不同?xgboost为什么快?xgboost如何支持并行?
看了陈天奇大神的文章和slides,略抒己见,没有面面俱到,不恰当的地方欢迎讨论:
传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。
传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。
xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。
Shrinkage(缩减),相当于学习速率(xgboost中的eta)。xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。实际应用中,一般把eta设置得小一点,然后迭代次数设置得大一点。(补充:传统GBDT的实现也有学习速率)
列抽样(column subsampling)。xgboost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。
对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出它的分裂方向。
xgboost工具支持并行。boosting不是一种串行的结构吗?怎么并行的?注意xgboost的并行不是tree粒度的并行,xgboost也是一次迭代完才能进行下一次迭代的(第t次迭代的代价函数里包含了前面t-1次迭代的预测值)。xgboost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。
可并行的近似直方图算法。树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。
=============
回复 @肖岩在评论里的问题,因为有些公式放正文比较好。评论里讨论的问题的大意是 “xgboost代价函数里加入正则项,是否优于cart的剪枝”。其实陈天奇大神的slides里面也是有提到的,我当一下搬运工。
决策树的学习过程就是为了找出最优的决策树,然而从函数空间里所有的决策树中找出最优的决策树是NP-C问题,所以常采用启发式(Heuristic)的方法,如CART里面的优化GINI指数、剪枝、控制树的深度。这些启发式方法的背后往往隐含了一个目标函数,这也是大部分人经常忽视掉的。xgboost的目标函数如下:
其中正则项控制着模型的复杂度,包括了叶子节点数目T和leaf score的L2模的平方:
那这个跟剪枝有什么关系呢???
跳过一系列推导,我们直接来看xgboost中树节点分裂时所采用的公式:
这个公式形式上跟ID3算法(采用entropy计算增益) 、CART算法(采用gini指数计算增益) 是一致的,都是用分裂后的某种值 减去 分裂前的某种值,从而得到增益。为了限制树的生长,我们可以加入阈值,当增益大于阈值时才让节点分裂,上式中的gamma即阈值,它是正则项里叶子节点数T的系数,所以xgboost在优化目标函数的同时相当于做了预剪枝。另外,上式中还有一个系数lambda,是正则项里leaf score的L2模平方的系数,对leaf score做了平滑,也起到了防止过拟合的作用,这个是传统GBDT里不具备的特性。