linux 出现 segment fault怎么解决

 我来答
百度网友7630190
2017-01-12 · TA获得超过1050个赞
知道大有可为答主
回答量:1159
采纳率:0%
帮助的人:489万
展开全部
1. 段错误是什么
一句话来说,段错误是指访问的内存超出了系统给这个程序所设定的内存空间,例如访问了不存在的内存地址、访问了系统保护的内存地址、访问了只读的内存地址等等情况。这里贴一个对于“段错误”的准确定义(参考Answers.com):

A segmentation fault (often shortened to segfault) is a particular error condition that can occur during the operation of computer software. In short, a segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed (e.g., attempts to write to a read-only location, or to overwrite part of the operating system). Systems based on processors like the Motorola 68000 tend to refer to these events as Address or Bus errors.

Segmentation is one approach to memory management and protection in the operating system. It has been superseded by paging for most purposes, but much of the terminology of segmentation is still used, "segmentation fault" being an example. Some operating systems still have segmentation at some logical level although paging is used as the main memory management policy.

On Unix-like operating systems, a process that accesses invalid memory receives the SIGSEGV signal. On Microsoft Windows, a process that accesses invalid memory receives the STATUS_ACCESS_VIOLATION exception.

2. 段错误产生的原因
2.1 访问不存在的内存地址

#include<stdio.h>
#include<stdlib.h>
void main()
{
int *ptr = NULL;
*ptr = 0;
}

2.2 访问系统保护的内存地址

#include<stdio.h>
#include<stdlib.h>
void main()
{
int *ptr = (int *)0;
*ptr = 100;
}

2.3 访问只读的内存地址

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
void main()
{
char *ptr = "test";
strcpy(ptr, "TEST");
}

2.4 栈溢出

#include<stdio.h>
#include<stdlib.h>
void main()
{
main();
}

等等其他原因。
3. 段错误信息的获取
程序发生段错误时,提示信息很少,下面有几种查看段错误的发生信息的途径。
3.1 dmesg
dmesg可以在应用程序crash掉时,显示内核中保存的相关信息。如下所示,通过dmesg命令可以查看发生段错误的程序名称、引起段错误发生的内存地址、指令指针地址、堆栈指针地址、错误代码、错误原因等。以程序2.3为例:
panfeng@ubuntu:~/segfault$ dmesg
[ 2329.479037] segfault3[2700]: segfault at 80484e0 ip 00d2906a sp bfbbec3c error 7 in libc-2.10.1.so[cb4000+13e000]

3.2 -g
使用gcc编译程序的源码时,加上-g参数,这样可以使得生成的二进制文件中加入可以用于gdb调试的有用信息。以程序2.3为例:
panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c

3.3 nm
使用nm命令列出二进制文件中的符号表,包括符号地址、符号类型、符号名等,这样可以帮助定位在哪里发生了段错误。以程序2.3为例:

panfeng@ubuntu:~/segfault$ nm segfault3
08049f20 d _DYNAMIC
08049ff4 d _GLOBAL_OFFSET_TABLE_
080484dc R _IO_stdin_used
w _Jv_RegisterClasses
08049f10 d __CTOR_END__
08049f0c d __CTOR_LIST__
08049f18 D __DTOR_END__
08049f14 d __DTOR_LIST__
080484ec r __FRAME_END__
08049f1c d __JCR_END__
08049f1c d __JCR_LIST__
0804a014 A __bss_start
0804a00c D __data_start
08048490 t __do_global_ctors_aux
08048360 t __do_global_dtors_aux
0804a010 D __dso_handle
w __gmon_start__
0804848a T __i686.get_pc_thunk.bx
08049f0c d __init_array_end
08049f0c d __init_array_start
08048420 T __libc_csu_fini
08048430 T __libc_csu_init
U __libc_start_main@@GLIBC_2.0
0804a014 A _edata
0804a01c A _end
080484bc T _fini
080484d8 R _fp_hw
080482bc T _init
08048330 T _start
0804a014 b completed.6990
0804a00c W data_start
0804a018 b dtor_idx.6992
080483c0 t frame_dummy
080483e4 T main
U memcpy@@GLIBC_2.0

3.4 ldd
使用ldd命令查看二进制程序的共享链接库依赖,包括库的名称、起始地址,这样可以确定段错误到底是发生在了自己的程序中还是依赖的共享库中。以程序2.3为例:
panfeng@ubuntu:~/segfault$ ldd ./segfault3
linux-gate.so.1 => (0x00e08000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0x00675000)
/lib/ld-linux.so.2 (0x00482000)

4. 段错误的调试方法
4.1 使用printf输出信息
这个是看似最简单但往往很多情况下十分有效的调试方式,也许可以说是程序员用的最多的调试方式。简单来说,就是在程序的重要代码附近加上像printf这类输出信息,这样可以跟踪并打印出段错误在代码中可能出现的位置。
为了方便使用这种方法,可以使用条件编译指令#ifdef DEBUG和#endif把printf函数包起来。这样在程序编译时,如果加上-DDEBUG参数就能查看调试信息;否则不加该参数就不会显示调试信息。
4.2 使用gcc和gdb
4.2.1 调试步骤
1、为了能够使用gdb调试程序,在编译阶段加上-g参数,以程序2.3为例:
panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c

2、使用gdb命令调试程序:

panfeng@ubuntu:~/segfault$ gdb ./segfault3
GNU gdb (GDB) 7.0-ubuntu
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "i486-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/panfeng/segfault/segfault3...done.
(gdb)

3、进入gdb后,运行程序:

(gdb) run
Starting program: /home/panfeng/segfault/segfault3

Program received signal SIGSEGV, Segmentation fault.
0x001a306a in memcpy () from /lib/tls/i686/cmov/libc.so.6
(gdb)

从输出看出,程序2.3收到SIGSEGV信号,触发段错误,并提示地址0x001a306a、调用memcpy报的错,位于/lib/tls/i686/cmov/libc.so.6库中。
4、完成调试后,输入quit命令退出gdb:

(gdb) quit
A debugging session is active.

Inferior 1 [process 3207] will be killed.

Quit anyway? (y or n) y

4.2.2 适用场景
1、仅当能确定程序一定会发生段错误的情况下使用。
2、当程序的源码可以获得的情况下,使用-g参数编译程序。
3、一般用于测试阶段,生产环境下gdb会有副作用:使程序运行减慢,运行不够稳定,等等。
4、即使在测试阶段,如果程序过于复杂,gdb也不能处理。
4.3 使用core文件和gdb
在4.2节中提到段错误会触发SIGSEGV信号,通过man 7 signal,可以看到SIGSEGV默认的handler会打印段错误出错信息,并产生core文件,由此我们可以借助于程序异常退出时生成的core文件中的调试信息,使用gdb工具来调试程序中的段错误。
4.3.1 调试步骤
1、在一些Linux版本下,默认是不产生core文件的,首先可以查看一下系统core文件的大小限制:
panfeng@ubuntu:~/segfault$ ulimit -c
0

2、可以看到默认设置情况下,本机Linux环境下发生段错误时不会自动生成core文件,下面设置下core文件的大小限制(单位为KB):
panfeng@ubuntu:~/segfault$ ulimit -c 1024
panfeng@ubuntu:~/segfault$ ulimit -c
1024

3、运行程序2.3,发生段错误生成core文件:
panfeng@ubuntu:~/segfault$ ./segfault3
段错误 (core dumped)

4、加载core文件,使用gdb工具进行调试:

panfeng@ubuntu:~/segfault$ gdb ./segfault3 ./core
GNU gdb (GDB) 7.0-ubuntu
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "i486-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/panfeng/segfault/segfault3...done.

warning: Can't read pathname for load map: 输入/输出错误.
Reading symbols from /lib/tls/i686/cmov/libc.so.6...(no debugging symbols found)...done.
Loaded symbols for /lib/tls/i686/cmov/libc.so.6
Reading symbols from /lib/ld-linux.so.2...(no debugging symbols found)...done.
Loaded symbols for /lib/ld-linux.so.2
Core was generated by `./segfault3'.
Program terminated with signal 11, Segmentation fault.
#0 0x0018506a in memcpy () from /lib/tls/i686/cmov/libc.6

从输出看出,同4.2.1中一样的段错误信息。
5、完成调试后,输入quit命令退出gdb:
(gdb) quit

4.3.2 适用场景
1、适合于在实际生成环境下调试程序的段错误(即在不用重新发生段错误的情况下重现段错误)。
2、当程序很复杂,core文件相当大时,该方法不可用。
4.4 使用objdump
4.4.1 调试步骤
1、使用dmesg命令,找到最近发生的段错误输出信息:
panfeng@ubuntu:~/segfault$ dmesg
... ...
[17257.502808] segfault3[3320]: segfault at 80484e0 ip 0018506a sp bfc1cd6c error 7 in libc-2.10.1.so[110000+13e000]

其中,对我们接下来的调试过程有用的是发生段错误的地址:80484e0和指令指针地址:0018506a。
2、使用objdump生成二进制的相关信息,重定向到文件中:
panfeng@ubuntu:~/segfault$ objdump -d ./segfault3 > segfault3Dump

其中,生成的segfault3Dump文件中包含了二进制文件的segfault3的汇编代码。
3、在segfault3Dump文件中查找发生段错误的地址:

panfeng@ubuntu:~/segfault$ grep -n -A 10 -B 10 "80484e0" ./segfault3Dump
121- 80483df: ff d0 call *%eax
122- 80483e1: c9 leave
123- 80483e2: c3 ret
124- 80483e3: 90 nop
125-
126-080483e4 <main>:
127- 80483e4: 55 push %ebp
128- 80483e5: 89 e5 mov %esp,%ebp
129- 80483e7: 83 e4 f0 and $0xfffffff0,%esp
130- 80483ea: 83 ec 20 sub $0x20,%esp
131: 80483ed: c7 44 24 1c e0 84 04 movl $0x80484e0,0x1c(%esp)
132- 80483f4: 08
133- 80483f5: b8 e5 84 04 08 mov $0x80484e5,%eax
134- 80483fa: c7 44 24 08 05 00 00 movl $0x5,0x8(%esp)
135- 8048401: 00
136- 8048402: 89 44 24 04 mov %eax,0x4(%esp)
137- 8048406: 8b 44 24 1c mov 0x1c(%esp),%eax
138- 804840a: 89 04 24 mov %eax,(%esp)
139- 804840d: e8 0a ff ff ff call 804831c <memcpy@plt>
140- 8048412: c9 leave
141- 8048413: c3 ret

通过对以上汇编代码分析,得知段错误发生main函数,对应的汇编指令是movl $0x80484e0,0x1c(%esp),接下来打开程序的源码,找到汇编指令对应的源码,也就定位到段错误了。
4.4.2 适用场景
1、不需要-g参数编译,不需要借助于core文件,但需要有一定的汇编语言基础。
2、如果使用了gcc编译优化参数(-O1,-O2,-O3)的话,生成的汇编指令将会被优化,使得调试过程有些难度。
4.5 使用catchsegv
catchsegv命令专门用来扑获段错误,它通过动态加载器(ld-linux.so)的预加载机制(PRELOAD)把一个事先写好的库(/lib/libSegFault.so)加载上,用于捕捉断错误的出错信息。

panfeng@ubuntu:~/segfault$ catchsegv ./segfault3
Segmentation fault (core dumped)
*** Segmentation fault
Register dump:

EAX: 00000000 EBX: 00fb3ff4 ECX: 00000002 EDX: 00000000
ESI: 080484e5 EDI: 080484e0 EBP: bfb7ad38 ESP: bfb7ad0c

EIP: 00ee806a EFLAGS: 00010203

CS: 0073 DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 007b

Trap: 0000000e Error: 00000007 OldMask: 00000000
ESP/signal: bfb7ad0c CR2: 080484e0

Backtrace:
/lib/libSegFault.so[0x3b606f]
??:0(??)[0xc76400]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe6)[0xe89b56]
/build/buildd/eglibc-2.10.1/csu/../sysdeps/i386/elf/start.S:122(_start)[0x8048351]

Memory map:
sky不用太多sky
高粉答主

2018-04-10 · 醉心答题,欢迎关注
知道大有可为答主
回答量:1082
采纳率:97%
帮助的人:48万
展开全部

Linux 系统下面出现:Segment fault(段错误)提示信息,有时候是由于你自己在编写程序的过程中,有数组越界、或者是内存泄漏(例如: 引用了空指针)等原因造成的。具体是哪一种情况,就需要自己仔细查看自己编写的源程序,到底哪里有程序漏洞。

Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。它能运行主要的UNIX工具软件、应用程序和网络协议。它支持32位和64位硬件。Linux继承了Unix以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统。

Linux操作系统诞生于1991 年10 月5 日(这是第一次正式向外公布时间)。Linux存在着许多不同的Linux版本,但它们都使用了Linux内核。Linux可安装在各种计算机硬件设备中,比如手机、平板电脑、路由器、视频游戏控制台、台式计算机、大型机和超级计算机。

严格来讲,Linux这个词本身只表示Linux内核,但实际上人们已经习惯了用Linux来形容整个基于Linux内核,并且使用GNU工程各种工具和数据库的操作系统。

在图形计算中,一个桌面环境(Desktop environment,有时称为桌面管理器)为计算机提供一个图形用户界面(GUI)。但严格来说窗口管理器和桌面环境是有区别的。桌面环境就是桌面图形环境,它的主要目标是为Linux/Unix操作系统提供一个更加完备 的界面以及大量各类整合工具和使用 程序,其基本 易用性吸引着大量的新用户。桌面环境名称来自桌面比拟,对应于早期的文字命令行界面(CLI)。一个典型的桌面环境提供图标,视窗,工具栏,文件夹,壁纸以及像拖放这样的能力。整体而言,桌面环境在设计和功能上的特性,赋予了它与众不同的外观和感觉。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式