
fx=e^-x^2 f'xf''xdx0到1的定积分
1个回答
展开全部
f'(x)=2xe∧-x^4
原式=1/2x^2f(x)(0~1)-∫(0~1)1/2x^2f'(x)dx
(分部积分法)
=1/2x^2f(x)(0~1) 1/4e^-x∧4(0~1)
(当x取0或1时)1/2xf(x)=0所以
原式=1/4e-x^4(0~1)=(e^-1-1)/4
原式=1/2x^2f(x)(0~1)-∫(0~1)1/2x^2f'(x)dx
(分部积分法)
=1/2x^2f(x)(0~1) 1/4e^-x∧4(0~1)
(当x取0或1时)1/2xf(x)=0所以
原式=1/4e-x^4(0~1)=(e^-1-1)/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询