一道线代题,求大佬解答! 5

 我来答
匿名用户
2017-10-03
展开全部
证明:因为奇数次实系数多项式形如:
a(2n-1)x^(2n-1)+a(2n-2)x^(2n-2)+……+a2x^2+a1x+a0=0
其中最高次项系数a(2n-1)≠0
令f(x)=a(2n-1)x^(2n-1)+a(2n-2)x^(2n-2)+……+a2x^2+a1x+a0
如果a(2n-1)>0,则当x->+∞时,f(x)->+∞;
当x->-∞时,f(x)->-∞.
因f(x)在x∈R上连续,根据介值定理,必有一实根x0满足f(x0)=0.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式