可逆矩阵和它的逆矩阵可以相互变换吗?
2个回答
展开全部
矩阵A的转置矩阵A^T等于A的逆矩阵A^-1
那么AA^T=AA^-1=E
设A=(α1,α2,α3,...,αn)^T,其中αi为n维列向量,
那么A^T=(α1,α2,α3,...,αn),
α1^Tα1,α1^Tα2,α1^Tα3,...,α1^Tαn
α2^Tα1,α2^Tα2,α2^Tα3,...,α2^Tαn
那么AA^T=( ...............)=E,
...............
αn^Tα1,αn^Tα2,αn^Tα3,...,αn^Tαn
那么||αi^Tαi||=1,||αi^Tαj||,i≠j,
也就是说A的每一个列向量的长度等于1并且每两个行向量相互正交
同理设A=(α1,α2,α3,...,αn)时用A^TA=E可以证明A的每一个行向量的长度等于1并且每两个行向量相互正交
这样的矩阵叫做正交矩阵,也就是说A必须是单位矩阵才满足A^T=A^-1
那么AA^T=AA^-1=E
设A=(α1,α2,α3,...,αn)^T,其中αi为n维列向量,
那么A^T=(α1,α2,α3,...,αn),
α1^Tα1,α1^Tα2,α1^Tα3,...,α1^Tαn
α2^Tα1,α2^Tα2,α2^Tα3,...,α2^Tαn
那么AA^T=( ...............)=E,
...............
αn^Tα1,αn^Tα2,αn^Tα3,...,αn^Tαn
那么||αi^Tαi||=1,||αi^Tαj||,i≠j,
也就是说A的每一个列向量的长度等于1并且每两个行向量相互正交
同理设A=(α1,α2,α3,...,αn)时用A^TA=E可以证明A的每一个行向量的长度等于1并且每两个行向量相互正交
这样的矩阵叫做正交矩阵,也就是说A必须是单位矩阵才满足A^T=A^-1
追问
可逆矩阵可以通过初等变换变成单位矩阵吗
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询