齐次微分方程的齐次到底指什么,是各项指数相等吗?
指简化后的方程中所有非零项的指数相等。也叫所含各项关于未知数的次数。其方程左端是含未知数的项,右端等于零。通常齐次方程是求解问题的过渡形式,化为齐次方程后便于求解。
齐次微分方程(homogeneous differential equation)是指能化为可分离变量方程的一类微分方程,它的标准形式是 y'=f(y/x),其中 f 是已知的连续方程。
扩展资料
(1)特点:方程中每一项的次方相同,且都可以化为一般形式
(2)解法:令
成为可分离变量的微分方程,求解后再用
代替
参考资料来源:百度百科-齐次微分方程
齐次微分方程的“齐次”从词面上解释是“次数相等”的意思。
齐次微分方程(homogeneous differential equation)是指能化为可分离变量方程的一类微分方程,它的标准形式是 y'=f(y/x),其中 f 是已知的连续方程。齐次微分方程通过变量代换,可化为可分离变量微分方程来求解。
求解齐次微分方程的特点:
齐次微分方程的特点是其右端项是以y/x为变元的连续函数。
求解齐次微分方程的关键是作变换 u=y/x ,即 y=ux ,它可以把方程转换为关于 u 与 x 的可分离变量的方程,此时有 y'=u+xu',代入原方程即可得可分离变量的方程 u+xu'=f(u) ,分离变量并积分即可得到结果,需要注意的是,最后应把 u=y/x 代入,并作必要的变形。
以上内容参考:
微分方程中有两个地方用到“齐次”的叫法:
1、形如y'=f(y/x)的方程称为“齐次方程”,这里是指方程中每一项关于x、y的次数都是相等的,例如x^2,xy,y^2都算是二次项,而y/x算0次项,方程y'=1+y/x中每一项都是0次项,所以是“齐次方程”。
2、形如y''+py'+qy=0(其中p和q为关于x的函数)的方程称为“齐次线性方程”,这里“线性”是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的(都是一次),“齐次”是指方程中没有自由项(不包含y及其导数的项),方程y''+py'+qy=x就不是“齐次”的,因为方程右边的项x不含y及y的导数,因而就要称为“非齐次线性方程”。
另外在线性代数里也有“齐次”的叫法,例如f=ax²+bxy+cy^2称为二次齐式,即二次齐次式的意思,因为f中每一项都是关于x、y的二次项。