1个回答
展开全部
f(x)=(sin2x+2cos²x)/cosx
=(2sinxcosx+2cos²x)/cosx
=2cosx(sinx+cosx)/cosx
=2√2sin(x+π/4)·cosx/cosx
定义域分母≠0→x≠2kπ±π/2
∴f(x)可以化简为:f(x)=2√2sin(x+π/4) x≠2kπ±π/2
f(π/4)=2√2sin(π/4+π/4)=2√2
②将x+π/4看成整体:
单调递增区间:2kπ-π/2<x+π/4<2kπ+π/2→2kπ-3π/4<x<2kπ+π/4
对照所给区间x∈(0,π/2),f(x)的单调递增区间是x∈(0,π/4)
=(2sinxcosx+2cos²x)/cosx
=2cosx(sinx+cosx)/cosx
=2√2sin(x+π/4)·cosx/cosx
定义域分母≠0→x≠2kπ±π/2
∴f(x)可以化简为:f(x)=2√2sin(x+π/4) x≠2kπ±π/2
f(π/4)=2√2sin(π/4+π/4)=2√2
②将x+π/4看成整体:
单调递增区间:2kπ-π/2<x+π/4<2kπ+π/2→2kπ-3π/4<x<2kπ+π/4
对照所给区间x∈(0,π/2),f(x)的单调递增区间是x∈(0,π/4)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |