展开全部
23、(1)f(-x)=ln[(-x+1)/(-x-1)]=ln[(x-1)/(x+1)]=ln[(x+1)/(x-1)]ˉ¹ =-ln[(x+1)/(x-1)]=-f(x)
f(x)为奇函数
(2) f(x²+x+1)+f(-2x²+4x-7)>0
即 ln【(x²+x+2)/(x²+x)】+ln【(x²-2x+3)/(x²-2x+4)】>0
(x²+x+2)(x²-2x+3)/[(x²+x)(x²-2x+4)]>1
因为 x²+x+2>0,x²-2x+3>0,x²-2x+4>0
则 x²+x>0 且 (x²+x+2)(x²-2x+3)>(x²+x)(x²-2x+4)
整理后,得 x²-5x+6>0
x>3或 0<x<2或 x<-1
f(x)为奇函数
(2) f(x²+x+1)+f(-2x²+4x-7)>0
即 ln【(x²+x+2)/(x²+x)】+ln【(x²-2x+3)/(x²-2x+4)】>0
(x²+x+2)(x²-2x+3)/[(x²+x)(x²-2x+4)]>1
因为 x²+x+2>0,x²-2x+3>0,x²-2x+4>0
则 x²+x>0 且 (x²+x+2)(x²-2x+3)>(x²+x)(x²-2x+4)
整理后,得 x²-5x+6>0
x>3或 0<x<2或 x<-1
展开全部
给你解题思路
你先根据对数函数的定义域去求X的定义域,在根据奇函数的定义 将-x带入式子再一直化出-F(x)的形式 就可证明出来
取x1 x2设x1小于x2 带入式子 列成fx1-fx2 .正值单挑递减 负值单调递增 然后你再去解不等式 先列出式子 再根据前面证明的奇函数和单调性带进去求解集
,,这个就不知道怎么说了 你将后面的式子带入fx去转化成ln2n+1 再列一个上式减2n化简成ln2n+1-(2n+1)-1你会发现与gx相同 根据它给的单调性得g2n+1小于0你再变成ln2n+1-(2n+1)-1小于0 就可以证出来了
实在不会你就学霸君或者小辕吧 我一个个字打的 你把奖金给我吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(-x)=ln[(-x+1)/(-x-1)]=ln[(x-1)/(x+1)]=-ln[(x+1)/(x-1)]=-f(x),所以函数f(x)为奇函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询