z=arctanx/y+Iny/z,则对x的偏导数
2个回答
展开全部
即z=arctanx/y,两边同时求导得到:
dz={1/[1+(x/y)^2]*(ydx-xdy)/y^2
=[y^2/(x^2+y^2)]*(ydx-xdy)/y^2
=(ydx-xdy)/(x^2+y^2)
=ydx/(x^2+y^2)-xdy/(x^2+y^2)
所以
z对x的偏导数=y/(x^2+y^2);
z对y的偏导数=-x/(x^2+y^2)。
dz={1/[1+(x/y)^2]*(ydx-xdy)/y^2
=[y^2/(x^2+y^2)]*(ydx-xdy)/y^2
=(ydx-xdy)/(x^2+y^2)
=ydx/(x^2+y^2)-xdy/(x^2+y^2)
所以
z对x的偏导数=y/(x^2+y^2);
z对y的偏导数=-x/(x^2+y^2)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询