这道题怎么做啊谢谢
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
展开全部
=∫³√((x+1)/(x-1))/(x+1)(x-1)dx
=1/2∫³√((x+1)/(x-1))/(x-1)-³√((x+1)/(x-1))/(x+1)dx
=1/2∫(x+1)^(1/3)(x-1)^(-4/3)-(x+1)^(-2/3)(x-1)^(-1/3)dx
=-3/2∫(x+1)^(1/3)d(x-1)^(-1/3)-3/2∫(x-1)^(-1/3)d(x+1)^(1/3)
=(-3/2)(x+1)^(1/3)(x-1)^(-1/3)+C
=(-3/2)³√((x+1)/(x-1))+C
=1/2∫³√((x+1)/(x-1))/(x-1)-³√((x+1)/(x-1))/(x+1)dx
=1/2∫(x+1)^(1/3)(x-1)^(-4/3)-(x+1)^(-2/3)(x-1)^(-1/3)dx
=-3/2∫(x+1)^(1/3)d(x-1)^(-1/3)-3/2∫(x-1)^(-1/3)d(x+1)^(1/3)
=(-3/2)(x+1)^(1/3)(x-1)^(-1/3)+C
=(-3/2)³√((x+1)/(x-1))+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询