导数的分类讨论思路是怎样的4566655
1个回答
展开全部
要用泰勒公式
f(1)=f(x)+f'(x)(1-x)+1/2*f''(x0)(1-x)^2 ,x0介于1和x之间
f(0)=f(x)+f'(x)(0-x)+1/2*f''(x1)(0-x)^2 ,x1介于0和x之间
所以f(1)-f(0)=f'(x)+1/2*f''(x0)(1-x)^2-1/2*f''(x1) x^2
所以|f'(x)|≤|f(1)|+|f(0)|+1/2*|f''(x1)|x^2+1/2*|f''(x0)|(1-x)^2≤2a+b/2[x^2+(1-x)^2]≤2a+b/2
f(1)=f(x)+f'(x)(1-x)+1/2*f''(x0)(1-x)^2 ,x0介于1和x之间
f(0)=f(x)+f'(x)(0-x)+1/2*f''(x1)(0-x)^2 ,x1介于0和x之间
所以f(1)-f(0)=f'(x)+1/2*f''(x0)(1-x)^2-1/2*f''(x1) x^2
所以|f'(x)|≤|f(1)|+|f(0)|+1/2*|f''(x1)|x^2+1/2*|f''(x0)|(1-x)^2≤2a+b/2[x^2+(1-x)^2]≤2a+b/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询