
1个回答
展开全部
解:因为:[xe^(-2)]'=e^(-x^2)-2xe^(-x^2];
所以 ∫(0,1) e^(-x²/2)dx=[xe^(-2)](01)+∫(0,1)2xe^(-x^2]dx=1/e-∫(0,1)e^(-x^2]d(-x^2)
=1/e-e^(-x^2)|(0,1)=1/e-1/e+1=1。
所以 ∫(0,1) e^(-x²/2)dx=[xe^(-2)](01)+∫(0,1)2xe^(-x^2]dx=1/e-∫(0,1)e^(-x^2]d(-x^2)
=1/e-e^(-x^2)|(0,1)=1/e-1/e+1=1。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |