展开全部
dy/dx=-(4x+3y)/(x+y)=-(4+3y/x)/(1+y/x)
令u=y/x,则y=xu,dy/dx=u+xdu/dx
u+xdu/dx=-(4+3u)/(1+u)
xdu/dx=-(4+4u+u^2)/(1+u)=-(u+2)^2/(u+1)
(u+1)/(u+2)^2du=-dx/x
∫[1/(u+2)-1/(u+2)^2]du=∫-dx/x
ln|u+2|+1/(u+2)=-ln|x|+C
(u+2)e^[1/(u+2)]=C/x
(y/x+2)e^[1/(y/x+2)]=C/x
(y+2x)e^[x/(y+2x)]=C,其中C是任意常数
令u=y/x,则y=xu,dy/dx=u+xdu/dx
u+xdu/dx=-(4+3u)/(1+u)
xdu/dx=-(4+4u+u^2)/(1+u)=-(u+2)^2/(u+1)
(u+1)/(u+2)^2du=-dx/x
∫[1/(u+2)-1/(u+2)^2]du=∫-dx/x
ln|u+2|+1/(u+2)=-ln|x|+C
(u+2)e^[1/(u+2)]=C/x
(y/x+2)e^[1/(y/x+2)]=C/x
(y+2x)e^[x/(y+2x)]=C,其中C是任意常数
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询