有大神会解这道题吗?不定积分

 我来答
匿名用户
2018-04-27
展开全部
∫ tan⁻¹x/[x²(1 + x²)] dx
= ∫ tan⁻¹x d(- 1/x - tan⁻¹x)
= tan⁻¹x · (- 1/x - tan⁻¹x) - ∫ (- 1/x - tan⁻¹x) d(tan⁻¹x)
= - (tan⁻¹x)/x - (tan⁻¹x)² + ∫ (1/x + tan⁻¹x)/(1 + x²) dx
= - (tan⁻¹x)/x - (tan⁻¹x)² + ∫ [(1 + x²) - x²]/[x(1 + x²)] + ∫ tan⁻¹x/(1 + x²) dx
= - (tan⁻¹x)/x - (tan⁻¹x)² + ∫ 1/x dx - ∫ x/(1 + x²) dx + ∫ tan⁻¹x d(tan⁻¹x)
= - (tan⁻¹x)/x - (tan⁻¹x)² + ln|x| - (1/2)ln(1 + x²) + (1/2)(tan⁻¹x)² + C
= - (1/2)ln(1 + x²) - (1/2)(tan⁻¹x)² - (tan⁻¹x)/x + ln|x| + C
1079067689
2018-04-27 · TA获得超过147个赞
知道小有建树答主
回答量:411
采纳率:45%
帮助的人:125万
展开全部
你题目看错了吧?
追答

给你解答了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式