大一高数求教
lim(x->∞) ln(1+2^x). ln(1+ 3/x)
=lim(x->∞) ln(1+2^x)/[1/ ln(1+ 3/x)] ( ∞/∞ 分子分母分别求导)
=lim(x->∞) [ (ln2).2^x/(1+2^x) ]/{ [-1/(x+3) + 1/x]/[ln(1+ 3/x)]^2 }
=(ln2)lim(x->∞) 1/{ [-1/(x+3) + 1/x]/[ln(1+ 3/x)]^2 }
=(ln2) .lim(x->∞) x(x+3) .[ln(1+ 3/x)]^2 /3
=(1/3)(ln2) .lim(x->∞) x(x+3) .[ln(1+ 3/x)]^2
y= 1/x
=(1/3)(ln2) .lim(y->0) (1/y)(1/y+3) .[ln(1+ 3y)]^2
=(1/3)(ln2) .lim(y->0) (3y+1).[ln(1+ 3y)]^2 / y^2
=(1/3)(ln2) .lim(y->0) [ln(1+ 3y)]^2 / y^2
=(1/3)(ln2) .lim(y->0) 9y^2 / y^2
=(1/3)(ln2) (9)
=3ln2