急急)高等数学习题求解啊
展开全部
1. 矩阵初等行变换为
[1 1 k 1]
[1 k 1 1]
[k k k k]
初等行变换为
[1 1 k 1]
[0 k-1 1-k 0]
[0 0 k-k^2 0]
k = 1 时, 矩阵的秩是 1;
k = 0 时, 矩阵的秩是 2.
k ≠ 0 且 k ≠ 1 时
矩阵进一步初等行变换为
[1 1 k 1]
[0 1 1 0]
[0 0 1 0]
矩阵的秩是 3.
2. (A, b) 初等行变换为
[1 1 1 1 1]
[0 -1 -2 -6 λ-3]
[0 1 2 6 3]
初等行变换为
[1 0 -1 -5 λ-2]
[0 1 2 6 -λ+3]
[0 0 0 0 λ]
λ = 0 时, r(A, b) = r(A) = 2 < 4 方程组有无穷多解。
此时方程组化为
x1 = -2 + x3 + 5x4
x2 = 3 - 2x3 - 6x4
取 x3 = x4 = 0, 得特解 (-2, 3, 0, 0)^T
导出组是
x1 = x3 + 5x4
x2 = -2x3 - 6x4
取 x3 = 1, x4 = 0, 得 Ax= 0 的基础解系 (1, -2, 1, 0)^T;
取 x3 = 0, x4 = 1, 得 Ax= 0 的基础解系 (5, -6, 0, 1)^T;
λ = 0 时,方程组的全部解即通解是
x = (-2, 3, 0, 0)^T + k(1, -2, 1, 0)^T + c(5, -6, 0, 1)^T
[1 1 k 1]
[1 k 1 1]
[k k k k]
初等行变换为
[1 1 k 1]
[0 k-1 1-k 0]
[0 0 k-k^2 0]
k = 1 时, 矩阵的秩是 1;
k = 0 时, 矩阵的秩是 2.
k ≠ 0 且 k ≠ 1 时
矩阵进一步初等行变换为
[1 1 k 1]
[0 1 1 0]
[0 0 1 0]
矩阵的秩是 3.
2. (A, b) 初等行变换为
[1 1 1 1 1]
[0 -1 -2 -6 λ-3]
[0 1 2 6 3]
初等行变换为
[1 0 -1 -5 λ-2]
[0 1 2 6 -λ+3]
[0 0 0 0 λ]
λ = 0 时, r(A, b) = r(A) = 2 < 4 方程组有无穷多解。
此时方程组化为
x1 = -2 + x3 + 5x4
x2 = 3 - 2x3 - 6x4
取 x3 = x4 = 0, 得特解 (-2, 3, 0, 0)^T
导出组是
x1 = x3 + 5x4
x2 = -2x3 - 6x4
取 x3 = 1, x4 = 0, 得 Ax= 0 的基础解系 (1, -2, 1, 0)^T;
取 x3 = 0, x4 = 1, 得 Ax= 0 的基础解系 (5, -6, 0, 1)^T;
λ = 0 时,方程组的全部解即通解是
x = (-2, 3, 0, 0)^T + k(1, -2, 1, 0)^T + c(5, -6, 0, 1)^T
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询