我国矿物材料学研究现状与发展方向
2020-01-19 · 技术研发知识服务融合发展。
廖立兵
1 材料科学与工程学简介
1.1 基本概念
材料(Material):人类用以制成用于生活和生产的物品、器件、构件、机器和其他产品的物质。
材料是物质,但不是所有的物质都可以称为材料,如燃料、化学原料、工业化学品、食物和药物,一般不算是材料。
材料是科学技术发展水平的标志,是国家现代化程度的标志。
材料科学、能源科学、信息科学是现代科学技术的三大支柱。
新材料、信息和生物技术是新技术革命的主要标志。材料科学(Material Science)是以晶体学、固体物理学、热力学和动力学、冶金学和化工等学科为基础,对材料的内在规律和应用进行探讨的科学。材料工程学(Material Engineering or Technology)是根据材料应用中所需要的性能,应用已知的规律和理论,从成分、结构、性质等直到工程中的具体应用进行设计和实施的科学。
材料科学与工程(Material Science and Technology)是研究和应用材料的成分、组织、结构、制备工艺与材料性能和用途之间关系的一门学科。
1.2 材料的分类
(1)根据材料的成分、显微结构和性质划分:无机非金属材料(Inorganic Nonmetallic Materials)、有机高分子材料(Organic Polymers)、金属材料(Metals and Alloys,Metallic Materials)和复合材料(Composites)。
(2)根据材料的性质和用途划分:①工程(结构)材料(Structural Materials)。由其结构特点而决定材料的强度、硬度等力学性能能够满足工程技术结构上的需要,主要应用于工程技术方面的一类材料。包括金属材料、陶瓷材料、高聚物材料、复合材料。②功能材料(Functional Materials)。具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料;是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料;同时对改造某些传统产业,如农业、化工、建材等起着重要作用。在全球新材料领域中,功能材料约占85%。特种功能材料对高技术的发展起着重要的推动和支撑作用,是新世纪生物、能源、环保、空间等高技术领域的关键材料,成为各国新材料领域发展的重点,是各国高技术发展中的战略竞争热点。功能材料按使用性能分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料、机敏(智能)材料。
(3)纳米材料(Nano-Materials):是关于原子团簇、纳米颗粒、纳米薄膜、纳米碳管和纳米固体材料的总称。原子团簇:包含几个到数百个原子或尺度小于1nm的粒子,是介于原子与固体之间的原子集合体。纳米颗粒:尺寸大于原子团簇,小于通常的微粒,一般尺寸为1~100nm。纳米薄膜:指含有纳米粒子和原子团簇的薄膜、纳米尺寸厚度的薄膜、纳米级第二相粒子沉积镀层、纳米粒子复合涂层或多层膜。具有准三维结构与特征,性能异常。纳米固体:由纳米尺度水平的晶界、相界或位错等缺陷的核中的原子排列来获得具有新原子结构或微结构性质的固体。纳米晶体材料(有高密度缺陷核,超过50%的原子位于缺陷核内),纳米结构材料(由弹性畸变结晶区所分隔的许多缺陷核心区所组成),纳米复合材料(O-O复合:不同种类纳米粒子复合;O-2复合:纳米粒子分散到二维薄膜材料中;O-3复合:纳米粒子分散到三维固体中)。纳米微粒的基本性质:电子能级不连续(准连续能级离散化)、量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应。由于纳米粒子具有特殊性质,导致纳米材料具有一系列特殊性质。
(4)多孔材料(Porous Materials):具有高比表面积、高吸附性、离子交换性等性质。在吸附、分离、催化、纳米技术、分子识别、石油化工、精细化工和分子电子器件等领域广泛应用。根据国际纯粹与应用化学学会(IUPAC)的分类方案,将多孔材料依孔径大小分为:微孔材料(d<2nm)、介孔材料(2nm<d<50nm)、宏孔材料(d>50nm)。
(5)材料研究的四要素:性质与性能(Property and Performance)、成分(Composi-tion)、结构(Structure)和合成与加工(Process)
2 矿物材料学简介
2.1 基本概念
矿物材料(Mineral Material):以天然矿物或岩石为主要原料,经不以提纯金属和化工原料为目的的加工、改造所获得的材料或者能直接应用其物理、化学性质的矿物或岩石。矿物材料学(Mineral Material Science):是研究矿物材料的成分、结构、性质、性能、加工制备工艺及相互间的关系和矿物材料的工程应用技术的一门综合性边缘学科。
2.2 矿物材料学的研究内容
基础理论研究:矿物材料的性质与其矿物成分、非晶质成分、化学成分、微量元素等物质组分的关系;矿物材料的性质与其所含矿物的晶体结构、晶体化学、多型、结晶度、有序度等以及岩石结构、构造等的关系;矿物材料的性质与其晶界、表面、粒度等的关系;矿物材料的性质与其使用的原料种类、矿石类型、原料产地等的关系;矿物材料的性质与其加工改造温度、压力、气氛、矿化剂、黏结剂、乳化剂、偶联剂等加工工艺条件的关系;等等。
生产技术和应用研究:矿物材料的生产工艺路线、流程、设备、最佳配方等工程技术问题,以及矿物材料的应用领域、适用条件和保存方法等。
2.3 矿物材料的分类
按矿物材料的成分、结构和性质划分(一元系、二元系……);
按矿物材料的用途划分(陶瓷、玻璃、耐火材料……);
按矿物材料的状态划分(单晶、多晶、非晶、复合、分散);
按加工工艺特点划分:天然矿物材料、深加工矿物材料、复合及合成矿物材料;
综合分类:熔浆型材料(熔注结晶、玻璃釉料纤维等)、烧结型材料(耐火材料、陶瓷等)、保温材料、胶凝型材料、其他材料(建筑石材、粉体材料等);
建议的分类方案(按材料性质和用途划分):结构矿物材料(石材、结构陶瓷、矿物增强聚合物复合材料等)、功能矿物材料(环境矿物材料、纳米矿物材料、生物医用矿物材料、特种功能矿物材料等)。
2.4 矿物材料研究的意义
非金属矿产在国民经济中具有十分重要的作用,几乎应用于国民经济的各个领域,随着科学技术的不断发展,非金属矿产的应用领域还在不断扩大。在经济发达国家,非金属矿产的总产值大于金属矿产的总产值,因此一些学者把非金属矿产值是否大于金属矿产值作为衡量一个国家是否达到工业化国家的标志,并预言21世纪将进入“新石器时代”。非金属矿产的开发应用不仅在于是否掌握有非金属矿产资源,更在于是否掌握了非金属矿产开发应用的先进技术。我国非金属矿产资源非常丰富,已探明储量的就有87种,产地6000多处。但由于我国非金属矿产开发应用技术落后,大多数非金属矿产均为粗加工制品,因此总产值很低。
开展并加强矿物材料学研究对提高我国非金属矿物资源利用水平,提高人民生活质量,推动经济和社会发展具有重要意义。
3 我国矿物材料学研究现状
3.1 非金属矿物原料深加工研究
研究主要朝着超细粉碎、精细分级、提纯改性和多品种方向发展。由于在粉碎技术、超细粉碎和分级设备研制方面取得进展,我国目前已能进行多种粒度的粉碎和分级,个别矿种的粉碎分级水平已达国际先进水平。提纯研究也取得很大进展,主要表现在:针对新矿种的提纯新工艺大量涌现,传统非金属矿提纯工艺有了改进,微细粒提纯及高纯加工工艺设备有显著发展。
总之,在理论、方法、设备、选矿工艺、选矿药剂的应用研究方面都取得了可喜的成果。我国目前已基本具备成熟的加工高纯石墨、石英、硅藻土、高岭石、膨润土、金红石等的技术。
3.2 矿物孔道或层间域的离子、分子交换、插入有关的研究
已成为矿物材料研究的热点。研究对象主要是沸石等具孔道结构的矿物、岩石和以蒙脱石为主的各种粘土矿物和石墨等层状结构矿物。研究内容包括:孔道或层间离子交换技术及其应用;粘土矿物层间“柱撑”、插层技术及其应用等。目的是利用这些矿物孔道或层间域中的物质可交换性和层间域的可膨胀性质,或通过对这些性质加以改造,使其具有新的可利用的优异特性。比如通过对粘土矿物、沸石或膨胀石墨进行改性处理,使其具有吸附不同有害组分的性能,制备可用于各种环境治理的吸附剂。这方面的研究和应用领域很广,除在污水治理方面的应用外,改性过的孔道结构和层状结构矿物岩石还广泛用作催化剂载体、肥料增效剂、防水剂、膨胀剂、防沉降剂、凝胶剂、黏结剂、增塑剂、增稠剂、悬浮剂、脱色剂、导电材料、快离子导体材料、染色剂、干燥剂、过滤剂等。
3.3 矿物表面改性技术及其应用研究
即利用物理、化学方法对矿物表面进行处理,改变其表面性质,如表面原子结构和功能团、表面疏水性、电性、化学吸附和反应特性等,达到改善或提高矿物应用性能的目的。主要是为将矿物作为填料加到各种有机聚合物中时,使矿物与聚合物间有好的相容性,同时也提高矿物填料在聚合物中的分散效果。研究内容主要包括:表面改性剂的选取,不同表面改性剂对不同矿物的作用效果,表面改性工艺,表面改性效果等。
表面改性剂分有机和无机两类:①有机表面改性剂:偶联剂(硅烷类、钛酸酯类、锆类和络合物类等)、高级脂肪酸及其盐类、聚烯烃低聚物、不饱和有机酸、有机胺;②无机表面改性剂:氧化钛、氧化钠、氧化铁、氧化锆、氧化铝、氧化硅等金属氧化物。
目前应用最广泛的表面改性剂是偶联剂,其中又以硅烷偶联剂和钛酸酯偶联剂应用最多。硅烷偶联剂对表面有活性羟基的矿物作用效果较好,对硼、铁、碳的氧化物作用效果次之,对表面不含羟基的碳酸盐、碱金属氧化物几乎无效。
钛酸酯类偶联剂对矿物适用范围广,对表面有活性羟基的石英以及表面呈中性或碱性的碳酸钙、二氧化钛、长石、角闪石等大多数非金属矿物都有较好的偶联效果。
3.4 以非金属矿物为原料的新型建材研究
非金属矿物作为建材原料是矿物材料最传统的研究领域。随着科学技术的发展,这一领域的研究水平也随之提高,新技术不断涌现,仍然是矿物材料研究的一个重要领域。
研究内容主要集中在三个方面:传统原料矿物的应用新工艺研究、新原料矿物的发现和代替传统原料矿物的研究、新型建材开发研究。
应用领域极为广泛,涉及各种涂料、耐火材料、水泥、玻璃、陶瓷制品等。
3.5 非金属矿物中有用元素综合利用研究
一般而言,非金属矿产开发利用不以提取和利用其中的某种元素为目的,这是与金属矿产最大的区别。
由于资源紧缺和一些非金属矿物、岩石具有特殊的成分、结构,综合利用非金属矿物中某些元素的研究越来越受重视。
例如,由于我国钾资源严重短缺,已成为影响我国农业发展的一大因素,而很多非金属矿物岩石又富含钾元素,因此开发利用非金属矿物岩石中的钾,引起矿物材料研究者的关注,钾长岩、含钾页岩、伊利石等富钾矿物岩石相继被进行过活化、制备成矿物钾肥。
3.6 合成矿物材料研究
合成矿物材料的研究包括两个方面:利用某种天然矿物合成另一种矿物;用化学试剂合成矿物。
主要新成果:用凹凸棒石与磷酸反应生产活性二氧化硅、用天然沸石生产超轻硅酸钙、用叶蜡石合成沸石、人工合成金刚石、人工合成皂石、人工合成黄铜矿型太阳电池材料、以石英、粉煤灰等为原料,合成氮化硅、sialon等。
3.7 环境矿物材料研究
环境矿物材料是指以天然矿物岩石为主要原料,在制备和使用过程中能与环境相容和协调或在废弃后可被环境降解或对环境有一定净化和修复功能的材料。
利用天然矿物开发研制环境矿物材料具有得天独厚的条件,因为:矿物材料原料是天然矿物,与环境有很好的相容性;矿物材料生产能耗小、成本低;矿山尾矿综合利用本身即属于环境材料学研究内容;很多矿物材料有很好的环境修复、环境净化的功能。
因此,大力开展和加强矿物环境材料研究符合矿物材料的特点,建立环境矿物材料学科分支是时代的要求,是矿物材料的重要发展方向。
根据矿物材料的特点和在环保领域的应用情况,环境矿物材料的主要发展方向是:①环境工程矿物材料——即具有环境修复(如大气、水污染治理等)、环境净化(如杀菌、消毒、过滤、分离等)和环境替代功能(如替代环境负荷大的材料)的矿物材料;②环境相容矿物材料——即与环境有很好相容协调性的矿物材料(如生态建材等)。
矿物材料用于环保目的很早以前就开始,近年来更是备受关注,新技术、新材料、新应用成果层出不穷。
矿物材料除了在传统的污水处理、大气吸附、过滤脱色等方面应用水平不断提高外,在生态建材(如低温快烧陶瓷,具有保温、隔热、吸音、调光等功能的建材等)、杀菌、消毒剂、矿山尾矿综合利用等方面有新的应用技术和产品。
3.8 纳米矿物材料研究
这是矿物材料研究新领域,与以上很多研究领域相关。例如,非金属矿物深加工中的超细粉碎,正向纳米级方向发展,已制备出一些纳米级非金属矿制品;通过柱撑,将层状结构硅酸盐矿物剥离至纳米级颗粒用于橡塑制品增强等已成为层状结构矿物改性应用的新方向;微孔、介孔矿物材料的合成、充填(自组装)也将越来越受到人们的重视,等等。
3.9 生物医用矿物材料研究
包括生物医学材料和矿物药。
生物医学材料:用于和生物系统接合,以诊断、治疗或替换生物机体中的组织、器官或增进其功能的材料。又称生物材料。
矿物药:以天然矿物为原料或原料之一制备的各种药材。
3.10 特种矿物功能材料研究
例如发现光子晶体具有蛋白石型结构、有序方石英用于制备非线性光学晶体或作为制备光子晶体的模板、改性蒙脱石用于制备复合电极,具有高稳定性、可重复性和催化性的特点、纤维状海泡石作为增强材料用于制备摩擦材料。
3.11 矿物材料的其他应用研究
矿物材料研究还包括宝石加工和改善、矿物材料的基础理论研究等诸多方面,很难简单概括。宝石加工和改善已发展成一个专门领域,不作重点介绍。
4 矿物材料的重要发展方向
4.1 重要非金属矿物在不同物理场和化学环境中的各种效应研究
金属矿产主要是以应用它的某一元素为主,而非金属矿产主要是应用它的物化性质与工艺特性。工艺特性又主要取决于非金属矿物的化学组成、结构、构造和它的光学性、电性、热学性、磁性、声学性以及溶解、吸附、催化、扩散等物化特性。
因此,非金属矿物开发应用的基础是对非金属矿物的成分、结构及各种物化性能的研究。开展非金属矿物场效应及应用基础研究,将可获得重要非金属矿物完整的物化性能参数并查清这些参数与矿物成分、结构、外界环境间的关系,可建立起非金属矿物数据库,有利于开展矿物材料设计研究等。对改进已有的选矿工艺、改进现有的以这些矿物为原料的材料制备工艺、开拓这些非金属矿物新的应用途径和新的应用领域、开展矿物材料设计研究等都有十分重要的意义。
研究内容:在电场、磁场、光波、声波等作用下,或在各种化学环境中,对非金属矿物的各种参数(即非金属矿物的物化性能)进行测试;探讨这些参数与矿物成分、结构的关系,与外界条件的关系。
目的是获取重要非金属矿物全面的物理化学参数,为其有效应用或开拓其应用新领域奠定基础。
4.2 非金属矿物表面及界面学研究
矿物表面是指矿物和真空或气体的界面,表面有很多活跃的化学性质以及与体内不同的物理性质。
矿物材料界面是指矿物材料中相与相之间的接触表面。界面对多相矿物材料的性能起着极其重要的作用,甚至控制作用。表面与界面既有区别又有联系。矿物原料的表面是矿物材料界面的基础,对矿物材料界面有重要影响。因此矿物表面和界面的研究不能截然分开。矿物材料的表面及界面问题尚未获得足够的重视。随着矿物材料学的发展和研究的深入,表面、界面及其工程学研究将会成为矿物材料学研究的一个前沿领域。比如矿物超细、超纯加工、纳米矿物材料研制等都离不开表面、界面及其工程学。研究内容利用高分辨电子显微术、衍射衬度电子显微术、扫描隧道电子显微术、X射线能谱、电子能量损失谱、同步辐射连续X射线能量色散衍射等先进的分析测试技术,对矿物、矿物材料的表面、界面的层相组成及成分变化、位错类型及分布、残余应力等进行研究,在各种微观尺度上揭示表面、界面成分、结构细节及其与材料性能间的关系;重点研究架状、层状矿物的孔道结构特征、层间结构特征、孔道与层间域的各种化学、物理学特性等;研究各种产状、各种粒级矿物粉体的表面特性及与加工工艺间的关系。重点探讨矿物的超纯、超细工艺及其对矿物粉体表面、界面特性的影响;利用对矿物表面、界面的研究成果,利用已有的表面与界面工程学手段,研究开发以层状矿物为主的一系列重要非金属矿物的深加工新工艺技术,研制出一系列具优异性能的新型矿物材料。
4.3 矿物新材料设计研究
材料设计是近年来迅速形成和发展起来的一门材料学分支学科,是材料学理论和现代计算机技术相结合的产物,是社会经济发展对材料学研究提出的要求,因为传统的“试错”法已无法制备出能满足时代要求的新材料,只有在理论指导下进行“理性设计”,即根据对材料的具体要求,对材料配方、制备工艺、材料性能和行为机理进行预测。
矿物材料设计还未有人明确提出,但与此有关的工作已有一些报道。可以预料,随着矿物材料设计的开展,矿物材料研制水平将会提高到新的层次,矿物新材料也将不断出现。这项工作应注意吸引材料化学、材料物理学和计算机专业的专家学者广泛参与。
4.4 环境矿物材料学研究
近年来,环境矿物材料虽然发展迅猛,成果丰硕,但是环境矿物材料学作为一门学科分支还没有建立,环境矿物材料、环境工程矿物材料、环境相容矿物材料、环境降解矿物材料、环境负担性评估、生命周期评估(LCA)等概念尚未被广泛接受。
今后应进一步加强环境矿物材料学研究,提高环境矿物材料的研究和应用水平,扩大环境矿物材料的应用领域,发展环境矿物材料的相关理论(生态设计、生态加工、生态评价),扩大环境矿物材料在学术界、产业界的影响。
因此,发展环境矿物材料学仍然任重而道远。
4.5 农用矿物资源的高效应用理论及应用工艺研究
我国是人口大国、农业大国,面临着用少量土地养活众多人口的巨大压力。解决的途径只能是依靠科学种田,提高产量,保持生态平衡。天然非金属矿物在这些方面均可发挥重要作用。非金属矿物在农业上的应用主要包括:生产化肥,包括氮、磷、钾肥;微量元素化肥;稀土元素化肥、有机肥等;作饲料原料或添加剂;作为药剂矿物和载体矿物用于生产农药或直接用作农药;用于土壤改良。
以上应用均已有所开展,但应用技术水平低,范围窄,远远不能满足农业发展的需要,也远远没有充分发挥非金属矿物在这方面的应用潜力。比如我国是钾肥资源紧缺的国家,对含钾矿物岩石中的不可溶钾进行开发研究,可解决我国钾肥资源紧缺的问题。但目前这方面研究仍没有大的突破,主要问题是尚未寻找到高效、低成本、环境负担小的工艺技术。
研究内容包括:含钾矿物岩石钾元素活化、提取和综合利用新工艺研究;非金属矿物中微量元素、稀土元素和其他有用元素的综合利用研究;非金属矿物岩石在水土改良、生态环境改善方面的应用研究。
4.6 纳米矿物材料研究
由于纳米材料具有独特的成分、结构、性能及制备方法,这方面的研究仍将是材料学的前沿领域。纳米矿物材料与其他纳米材料相比,研究深度、广度均需提高。因此,除其他纳米材料所面临的共性问题外,纳米矿物材料更应加强以下方面研究:纳米矿物材料制备新技术、新型纳米矿物材料研制、纳米矿物材料有关理论研究。
参考文献
廖立兵.2004.从32届国际地质大会看矿物材料研究进展.现代地质,18(4):487~492
杨瑞成,蒋成禹,初福民主编.2002.材料科学与工程导论.哈尔滨:哈尔滨工业大学出版社
韩敏芳.2004.非金属矿物材料制备与工艺.北京:化学工业出版社
周馨我.2002.功能材料学.北京:北京理工大学出版社
曹茂盛,关长斌,徐甲强.2001.纳米材料导论.哈尔滨:哈尔滨工业大学出版社
翁端.2001.环境材料学.北京:清华大学出版社
徐国财,张立德.2002.纳米复合材料.北京:化学工业出版社
漆宗能,尚文宇.2002.聚合物/层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社
廖立兵.1998.我国矿物材料研究现状及几个应该重视的发展方向.见:中国矿物岩石地球化学学会第五届全国会员大会暨第六届学术交流会论文集.北京:经济出版社
倪文等.1998.矿物材料学导论.北京:科学出版社
邱克辉.1996.材料科学概论.成都:电子科技大学出版社