这两道题怎么写,微分和导数问题?
2个回答
展开全部
1. d[e^(-x)f(x)] = e^xdx, 则 [-e^(-x)f(x)-e^(-x)f'(x)]dx = e^xdx
得 -e^(-x)f(x)-e^(-x)f'(x) = e^x, 即 f'(x) + f(x) = e^(2x)
f(x) = e^(-∫dx)[∫e^(2x)e^(∫dx)dx + C] = e^(-x)[∫e^(3x)dx + C]
= e^(-x)[(1/3)e^(3x) + C], f(0) = 0, 得 C = -1/3
f(x) = (1/3)[e^(2x) - e^(-x)]
2. f(x) = lnx, f'(x) = 1/x
lim<h→0>[f^2(x+h)-f^2(x)]/(2h)
= lim<h→0>([f(x+h)+f(x)]/2} [f(x+h)-f(x)]/h
= f(x) f'(x) = lnx/x
得 -e^(-x)f(x)-e^(-x)f'(x) = e^x, 即 f'(x) + f(x) = e^(2x)
f(x) = e^(-∫dx)[∫e^(2x)e^(∫dx)dx + C] = e^(-x)[∫e^(3x)dx + C]
= e^(-x)[(1/3)e^(3x) + C], f(0) = 0, 得 C = -1/3
f(x) = (1/3)[e^(2x) - e^(-x)]
2. f(x) = lnx, f'(x) = 1/x
lim<h→0>[f^2(x+h)-f^2(x)]/(2h)
= lim<h→0>([f(x+h)+f(x)]/2} [f(x+h)-f(x)]/h
= f(x) f'(x) = lnx/x
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询