展开全部
1-cosxcos2xcos3x = 1-(1/2)cos2x(cos4x+cos2x)
= 1-(1/2)cos2xcos4x-(1/2)(cos2x)^2
=1-(1/4)(cos6x+cos2x)-(1/4)(1+cos4x)
= 3/4 - (1/4)(cos6x+cos4x+cos2x)
lim<x→0>(1-cosxcos2xcos3x)/(ax^n)
= lim<x→0>[3/4 - (1/4)(cos6x+cos4x+cos2x)]/(ax^n) (0/0)
= lim<x→0>(1/2)(3sin6x+2sin4x+sin2x)]/[anx^(n-1)] (0/0)
= lim<x→0>(9cos6x+4cos4x+cos2x)]/[an(n-1)x^(n-2)] = 1
n-2 = 0, an(n-1) = 14, n = 2, a = 7
= 1-(1/2)cos2xcos4x-(1/2)(cos2x)^2
=1-(1/4)(cos6x+cos2x)-(1/4)(1+cos4x)
= 3/4 - (1/4)(cos6x+cos4x+cos2x)
lim<x→0>(1-cosxcos2xcos3x)/(ax^n)
= lim<x→0>[3/4 - (1/4)(cos6x+cos4x+cos2x)]/(ax^n) (0/0)
= lim<x→0>(1/2)(3sin6x+2sin4x+sin2x)]/[anx^(n-1)] (0/0)
= lim<x→0>(9cos6x+4cos4x+cos2x)]/[an(n-1)x^(n-2)] = 1
n-2 = 0, an(n-1) = 14, n = 2, a = 7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询