求下列函数的极限。
(2)
y->0
siny = y -(1/6)y^3 +o(y^3)
y-siny =(1/6)y^3 +o(y^3)
lim(x->∞) x^2.[ 1- xsin(1/x) ]
y=1/x
=lim(y->0) [ 1- siny/y ]/y^2
=lim(y->0) [ y- siny ]/y^3
=lim(y->0) (1/6)y^3/y^3
=1/6
(3)
x->0
sinx = x -(1/6)x^3 +o(x^3)
x-sinx =(1/6)x^3 +o(x^3)
lim(x->0) [1/sinx - 1/x ]
=lim(x->0) (x -sinx)/(xsinx)
=lim(x->0) (1/6)x^3/x^2
=0
(4)
lim(x->0) [1/x^2 - (cscx)^2 ]
=lim(x->0) [(sinx)^2 - x^2 ]/[x^2 .(sinx)^2] ]
=lim(x->0) [(sinx)^2 - x^2 ]/x^4 (0/0分子分母分别求导)
=lim(x->0) [sin(2x) - 2x ]/(4x^3) (0/0分子分母分别求导)
=lim(x->0) [2cos(2x) - 2 ]/(12x^2)
cos2x = 1- (1/2)(2x)^2 +o(x^2)
=lim(x->0) { 2[ ( 1- (1/2)(2x)^2] - 2 }/(12x^2)
=lim(x->0) -4x^2/(12x^2)
=-1/3
...